首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is an attempt to estimate the electrical properties of SiO2 thin films by recording and analyzing their infrared transmission spectra. In order to study a big variety of films having different infrared and electrical properties, we studied SiO2 films prepared by low pressure chemical vapor deposition (LPCVD) from SiH4 + O2 mixtures at 425 °C and annealed at 750 °C and 950 °C for 30 min. In addition thermally grown gate quality SiO2 films of similar thickness were studied in order to compare their infrared and electrical properties with the LPCVD oxides. It was found that all studied SiO2 films have two groups of Si–O–Si bridges. The first group corresponds to bridges located in the bulk of the film and far away from the interfaces, the grain boundaries and defects and the second group corresponds to all other bridges located near the interfaces, the grain boundaries and defects. The relative population of the bulk over the boundary bridges was found equal to 0.60 for the LPCVD film after deposition and increased to 4.0 for the LPCVD films after annealing at 950 °C. Thermally grown SiO2 films at 950 °C were found to have a relative population of Si–O–Si bridges equal to 3.9. The interface trap density of the LPCVD film after deposition was found equal to 5.47 × 1012 eV−1 cm−2 and decreases to 6.50 × 1010 eV−1 cm−2 after annealing at 950 °C for 30 min. The interface trap density of the thermally grown film was found equal to 1.27 × 1011 eV−1 cm−2 showing that films with similar Si–O–Si bridge populations calculated from the FTIR analysis have similar interface trap densities.  相似文献   

2.
Low-dielectric constant SiOC:H films were prepared by plasma enhanced chemical vapour deposition (PECVD) from trimethyl-silane (H–Si–(CH3)3) and ozone (O3) gas mixture. The samples were preliminarily annealed at 400 °C in N2 atmosphere and then in N2+He plasma. Afterwards, they were treated in vacuum at some fixed temperatures in the range between 400 and 900 °C. Structural investigations of the annealed films were carried out by means of vibrational spectroscopy techniques. FT-IR spectrum of a preliminarily treated sample shows absorption bands due to stretching modes of structural groups like Si–CH3 at 1270 cm−1, Si–O–Si at 1034 cm−1 and C–Hx in the region between 2800 and 3000 cm−1. No significant spectral change was observed in the absorption spectra of samples annealed up to 600 °C, indicating that the preliminarily treated film retains a substantial structural stability up to this temperature. Above 600 °C, absorption spectra show a strong quenching of H-related peaks while the band due to Si–O–Si anti-symmetric stretching mode shifts towards higher energy, approaching the value observed for thermally grown SiO2. Raman spectra of samples treated at temperatures T500 °C exhibit both D and G bands typical of sp2-hybridised carbon, due to the formation of C–C bonds within the film which is accompanying the release of hydrogen. The intensity of D and G bands becomes more pronounced in samples annealed at higher temperatures, thus suggesting a progressive precipitation of carbon within the oxide matrix.  相似文献   

3.
Dispersion analysis was performed on low pressure chemically vapor deposited (LPCVD) SiO2 films grown from SiH4 + O2 at 425 °C. The transmission spectra were analyzed using four Lorentz oscillators within the range 900–1400 cm−1. It was found that the distribution of the SiOSi angles is a superposition of two Gaussians; one corresponding to bridges located in the bulk of the film and one corresponding to bridges located close to the boundaries of the film namely the interfaces of the films and the grain boundaries. The ratio between the bulk like SiOSi bridges over the boundary bridges was found equal to 0.61:1 indicating that films grown from SiH4 + O2 contain a higher number of boundary SiOSi bridges relative to those located in the bulk of the film. After annealing for 30 min at temperatures in the range from 550 to 950 °C, films were found to have a lower thickness. The calculated ratio of the two distributions after annealing have shown a clear reduction in the concentration of the boundary bridges as the temperature of annealing increases, in advance of the bridges located in the bulk of the film. For the film annealed at 950 °C for 30 min the ratio was found equal to 4.0:1 which is the same to that of thermally grown films at the same temperature.  相似文献   

4.
We report measured evolutions of the optical band gap, refractive index and relative dielectric constant of TiO2 films obtained by electron beam gun evaporation and annealed in an oxygen environment. A negative shift of the flat band voltage with increasing annealing temperatures, for any film thickness, is observed. A dramatic reduction of the leakage current by about four orders of magnitude to 5×10−6 A cm−2 (at 1 MV cm−1) after 700°C and 60 min annealing is found for films thinner than 15 nm. The basic carrier transport mechanisms at different ranges of applied voltage such as hopping, space charge limited current and Fowler–Nordheim is established. An equivalent SiO2 thickness in order of 3.5 nm is demonstrated.  相似文献   

5.
We extend the McPherson model for the silicon–oxygen bond-breakage in a manner to capture the impact of the O–Si–O angle fluctuations (typical for amorphous SiO2) on the breakage rate. In the McPherson model the transition of the Si ion from the 4-fold coordinated position to the 3-fold coordination is considered as rupture of the Si–O bond. We have studied the potential barrier (separating these saddle points) transformation induced by the O–Si–O bond angle variations and found that the secondary minimum occurs at a critical angle of about 107.75°. Since the Si ion “finds” the way corresponding to the highest breakage probability we used the two-dimensional downhill simplex method in order to find the direction of this maximal rate. It was shown that if the O–Si–O angle deviates from its nominal value 109.48° (typical for α-quartz) corresponding to the regular SiO4 tetrahedron the symmetry aggravates and the secondary minimum is rotated. Calculated dependencies of the breakage rate on the electric field demonstrate the linear slope in the log–lin scale thus reflecting the linear reduction of the activation energy for the bond-breakage vs. field. The family of distribution functions for breakage rate calculated with a fixed step of field shows that the curves do not change their form and are shifted in parallel with the field. This tendency supports the thermo-chemical model for the bond-breakage also in the case of strongly fluctuating O–Si–O angles. As a consequence, dependencies of the mean value of the rate, its standard deviation and the nominal rate (calculated for the angle of 109.48°) have the same slope on a log–lin scale. The wide spread of the breakage rate is reflected by the high value of its standard deviation.  相似文献   

6.
Using hydrofluoric acid (HF) as catalyst, nanoporous SiO2 thin film was synthesized by sol–gel method. By scanning electron microscopy, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis, ellipsometry, capacitance–voltage and current–voltage measurements, the effects of annealing on film properties were discussed in detail. The introduction of HF results in the less polarizability, the preferable microstructures and the improved thermal stability of the nanoporous silica films. After thermal annealing at 450 °C, the crack-free films with strong hydrophobicity, ultra-low dielectric constant of 1.65, porosity of 78%, and leakage current density of 1.3 × 10−8 A cm−2 were obtained.  相似文献   

7.
Tantalum pentoxide thin layers (10–100 nm) obtained by thermal oxidation of rf sputtered Ta films on Si have been investigated with respect of their dielectric, structural and electric properties. It is established that stoichiometric Ta2O5 detected at the surface of the layers is reduced to tantalum suboxides in their depth. The oxide parameters are discussed in terms of a presence of an unavoidable ultrathin SiO2 between Si and Ta2O5 and bond defects in both the oxide and the interface transition region. Conditions which guarantee obtaining high quality tantalum oxide with a dielectric constant of 32–35 and a leakage current less than 10−7–10−8 A/cm2 at 1.5 V (SiO2 equivalent thickness of 2.5–3 nm) are established. These specifications make the layers obtained suitable alternative to SiO2 for high density DRAMs application.  相似文献   

8.
Strontium tantalate (STO) films were grown by liquid-delivery (LD) metalorganic chemical vapor deposition (MOCVD) using Sr[Ta(OEt)5(OC2H4OMe)]2 as precursor. The deposition of the films was investigated in dependence on process conditions, such as substrate temperature, pressure, and concentration of the precursor. The growth rate varied from 4 to 300 nm/h and the highest rates were observed at the higher process temperature, pressure, and concentration of the precursor. The films were annealed at temperatures ranging from 600 to 1000 °C. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and ellipsometry indicated that the as-deposited and the annealed films were uniform and amorphous and a thin (>2 nm) SiO2 interlayer was found. Crystallization took place at temperatures of about 1000 °C. Annealing at moderate temperatures was found to improve the electrical characteristics despite different film thickness (effective dielectric constant up to 40, the leakage current up to 6×10−8 A/cm2, and lowest midgap density value of 8×1010 eV−1 cm−2) and did not change the uniformity of the STO films, while annealing at higher temperatures (1000 °C) created voids in the film and enhanced the SiO2 interlayer thickness, which made the electrical properties worse. Thus, annealing temperatures of about 800 °C resulted in an optimum of the electrical properties of the STO films for gate dielectric applications.  相似文献   

9.
Tantalum pentoxide thin films on Si prepared by two conventional for modern microelectronics methods (RF sputtering of Ta in Ar + O2 mixture and thermal oxidation of tantalum layer on Si) have been investigated with respect to their dielectric, structural and electric properties. It has been found that the formation of ultra thin SiO2 film at the interface with Si, during fabrication implementing the methods used, is unavoidable as both, X-ray photoelectron spectroscopy and electrical measurements, have indicated. The initial films (as-deposited and as-grown) are not perfect and contain suboxides of tantalum and silicon which act as electrical active centers in the form of oxide charges and interface states. Conditions which guarantee obtaining high quality tantalum oxide with dielectric constant of 32–37 and leakage current density less than 10−7 A/cm2 at 1.5 V applied voltage (Ta2O5 thickness equivalent to about 3.5 nm of SiO2) have been established. These specifications make the layers obtained suitable alternative to SiO2 for high density DRAM application.  相似文献   

10.
High-k gate dielectric La2O3 thin films have been deposited on Si(1 0 0) substrates by molecular beam epitaxy (MBE). Al/La2O3/Si metal-oxide–semiconductor capacitor structures were fabricated and measured. A leakage current of 3 × 10−9 A/cm2 and dielectric constant between 20 and 25 has been measured for samples having an equivalent oxide thickness (EOT) 2.2 nm. The estimated interface state density Dit is around 1 × 1011 eV−1 cm−2. EOT and flat-band voltage were calculated using the NCSU CVC program. The chemical composition of the La2O3 films was measured using X-ray photoelectron spectrometry and Rutherford backscattering. Current density vs. voltage curves show that the La2O3 films have a leakage current several orders of magnitude lower than SiO2 at the same EOT. Thin La2O3 layers survive anneals of up to 900 °C for 30 s with no degradation in electrical properties.  相似文献   

11.
Strontium bismuth tantalate, Sr0.7Bi2.2Ta2O9 (SBT), thin films were prepared by a new metalorganic decomposition (MOD) method using strontium (2,2,6,6-tetramethyl-3,5-heptanedionate), bismuth (2,2,6,6-tetramethyl-3,5-heptanedionate), and tantalum ethoxide as the metalorganic precursors. Films with a thickness of 300 nm were prepared on Si(1 0 0) with a layered bottom electrode (Pt/TiO2/SiO2). After crystallization in oxygen for 60 min at 750°C, single orthorhombic-phased films were obtained as determined by XRD, but no preferred crystalline orientation was revealed using this technique. Characterization by AFM showed that the polycrystalline films were densely packed and crack-free, and had an average surface roughness (rms) of 8 nm and a mean grain size of 150 nm. The remnant polarization and coercive field were 6 μC cm−2 and 74 kV cm−1, respectively. The SBT films showed a very low polarization fatigue after 1011 switching cycles and good retention properties.  相似文献   

12.
Silicon dioxide films have been deposited at temperatures less than 270 °C in an electron cyclotron resonance (ECR) plasma reactor from a gas phase combination of O2, SiH4 and He. The physical characterization of the material was carried out through pinhole density analysis as a function of substrate temperature for different μ-wave power (Ew). Higher Ew at room deposition temperature (RT) shows low defects densities (<7 pinhole/mm2) ensuring low-temperatures process integration on large area. From FTIR analysis and Thermal Desorption Spectroscopy we also evaluated very low hydrogen content if compared to conventional rf-PECVD SiO2 deposited at 350 °C. Electrical properties have been measured in MOS devices, depositing SiO2 at RT. No significant charge injection up to fields 6–7 MV/cm and average breakdown electric field >10 MV/cm are observed from ramps IV. Moreover, from high frequency and quasi-static CV characteristics we studied interface quality as function of annealing time and annealing temperature in N2. We found that even for low annealing temperature (200 °C) is possible to reduce considerably the interface state density down to 5 × 1011 cm−2 eV−1. These results show that a complete low-temperatures process can be achieved for the integration of SiO2 as gate insulator in polysilicon TFTs on plastic substrates.  相似文献   

13.
Aluminum nitride films were deposited, at 200 °C, on silicon substrates by RF sputtering. Effects of rapid thermal annealing on these films, at temperatures ranging from 400 to 1000 °C, have been studied. Fourier transform infrared spectroscopy (FTIR) revealed that the characteristic absorption band of Al–N, around 684 cm−1, became prominent with increased annealing temperature. X-ray diffraction (XRD) patterns exhibited a better, c-axis, (0 0 2) oriented AlN films at 800 °C. Significant rise in surface roughness, from 2.1 to 3.68 nm, was observed as annealing temperatures increased. Apart from these observations, micro-cracks were observed at 1000 °C. Insulator charge density increased from 2×1011 to 7.7×1011 cm−2 at higher temperatures, whereas, the interface charge density was found minimum, 3.2×1011 eV−1cm−2, at 600 °C.  相似文献   

14.
SrTiO3 thin films (STO), were deposited on Si(100) covered by 2 nm of SiO2, at different temperatures from 450 °C to 850 °C using liquid injection MOCVD, the bimetallic precursor being Sr2Ti2(OiPr)8(tmhd)4. The STO films were analysed by XRD, FTIR, SIMS and TEM. An amorphous layer was observed between STO and SiO2/Si. The nature and thickness of the interlayer were determined, as well as the most favourable conditions for a good quality crystalline STO film, and a reduced interlayer.  相似文献   

15.
Metal–insulator–metal (MIM) transparent capacitors were prepared by pulsed laser deposition (PLD) on glass substrates. The effect of the thickness of the dielectric layer and oxygen pressure on structural, electrical, and optical properties of these capacitors was investigated. Experimental results show that film thickness and oxygen pressure have no effect on the structural properties. It is also found that the optical properties of the HfO2 thin films depend strongly on both the film thickness and oxygen pressure. The electrical properties of transparent capacitors were investigated at various thickness of the dielectric layer. The capacitor shows an overall high performance, such as a high dielectric constant of 28 and a low leakage current of 2.03×10−6 A/cm2 at ±5 V. Transmittance above 70% was observed in visible region.  相似文献   

16.
Deposition of Ag films by direct liquid injection-metal organic chemical vapor deposition (DLI-MOCVD) was chosen because this preparation method allows precise control of precursor flow and prevents early decomposition of the precursor as compared to the bubbler-delivery. Silver(I)-2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionato-triethylphosphine [Ag(fod)(PEt3)] as the precursor for Ag CVD was studied, which is liquid at 30 °C. Ag films were grown on different substrates of SiO2/Si and TiN/Si. Argon and nitrogen/hydrogen carrier gas was used in a cold wall reactor at a pressure of 50–500 Pa with deposition temperature ranging between 220 °C and 350 °C. Ag films deposited on a TiN/Si diffusion barrier layer have favorable properties over films deposited on SiO2/Si substrate. At lower temperature (220 °C), film growth is essentially reaction-limited on SiO2 substrate. Significant dependence of the surface morphology on the deposition conditions exists in our experiments. According to XPS analysis pure Ag films are deposited by DLI-MOCVD at 250 °C by using argon as carrier gas.  相似文献   

17.
Si/SiO2 films have been grown using the two-target alternation magnetron sputtering technique. The thickness of the SiO2 layer in all the films was 8 nm and that of the Si layer in five types of the films ranged from 4 to 20 nm in steps of 4 nm. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structures at a forward bias of 5 V or larger. A broad band with one peak 650–660 nm appears in all the EL spectra of the structures. The effects of the thickness of the Si layer in the Si/SiO2 films and of input electrical power on the EL spectra are studied systematically.  相似文献   

18.
The kinetics of phase formation in Ti–Co–Si–N and Ti–Co–N thin films on Si and SiO2is investigated experimentally. With the deposition on Si, rapid thermal annealing (T 900°C) is shown to cause phase separation that ends in a TiN/CoSi2/Si structure. If SiO2is used, the alloy reacts with the substrate to produce compounds that are difficult to remove with selective etchants. This limits the potential uses of this process in the fabrication of contact systems for CMOS devices. It is shown that structure- and phase-dissimilar films can be formed on Si and SiO2by means of the surface-diffusion reactions between a Ti–Co–Si–N or Ti–Co–N alloy and the substrate at 650–700°C. The effect of a TiN, Ti, or CoSi2thin layer at the alloy–substrate interface on the phase separation is investigated.  相似文献   

19.
The conduction mechanisms and the microstructure of rf sputtered Ta2O5 on Si, before and after oxygen annealing at high temperatures (873, 1123 K; 30 min) have been investigated. The as-deposited and annealed at 873 K layers are amorphous whereas crystalline Ta2O5 (orthorhombic β-Ta2O5 phase) was obtained after O2 treatment at 1123 K. The results (electrical, X-ray diffraction, transmission electron microscopy) reveal the formation of an interfacial ultrathin SiO2 layer under all technological regimes used. The higher (493 K) substrate temperature during deposition stimulates the formation of amorphous rather than crystalline SiO2. It is found that the oxygen heating significantly reduces the oxide charge (Qf<1010 cm−2) and improves the breakdown characteristics (the effect is more pronounced for the higher annealing temperature). It is accompanied by an increase of the effective dielectric constant (up to 37 after 1123 K treatment). It is established that the influence of the oxygen treatment on the leakage current is different depending on the film thickness, namely: a beneficial effect for the thinner and a deterioration of leakage characteristics for thicker (80 nm) films. A leakage current density as low as 10−7 A/cm2 at 1 MV/cm applied field for 26 nm annealed layers has been obtained. The current reduction is considered to be due to a removal by annealing of certain structural nonperfections present in the initial layers. Generally, the results are discussed in terms of simultaneous action of two opposite and competing processes taking place at high temperatures––a real annealing of defects and an appearance of a crystal phase and/or a neutral traps generation. The contribution of the neutral traps also is involved to explain the observed weaker charge trapping in the as-fabricated films compared to the annealed ones.The conduction mechanism of the as-deposited films is found to be of Poole–Frenkel (PF) type for a wide range of applied fields. A change of the conduction mechanism for the annealed films at medium fields (0.8–1.3 MV/cm) is established. This transition from PF process to the Schottky emission limited current is explained with an annealing of bulk traps (oxygen vacancies and nonperfect bonds). It is concluded that the dominant conduction mechanism in the intermediate fields can be effectively controlled by appropriate technological steps.  相似文献   

20.
Structural and electrical properties of brush plated ZnTe films   总被引:1,自引:0,他引:1  
Zinc telluride thin films were deposited by the brush plating technique at a potential of −0.90 V (SCE) on conducting glass and titanium substrates at different temperatures in the range 30–90 °C. The films were polycrystalline in nature with peaks corresponding to the cubic phase. Direct band gap of 2.30 eV was observed. XPS studiers indicated the formation of ZnTe. Depth profiling studies indicated a uniform distribution of Zn and Te throughout the entire thickness. EDAX measurements were made on the films and it was found that there was a slight excess of Te. The carrier concentration was found to vary from 1014–1015 cm−3 with increase of substrate temperature. The mobility was found to vary from 5 to 60 cm2 V−1 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号