首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
对TiH2-47Al-0.2Si-10Nb和TiH2-47Al-0.2Si-12Nb成分的粉末机械合金化过程进行了研究,并将球磨30 h后的粉末进行放电等离子和真空烧结。借助X射线衍射仪、扫描电子显微镜和透射电子显微镜研究机械合金化对TiAl基合金烧结组织的影响。结果表明,高能机械球磨过程中形成了非晶相及TiAl金属间化合物,球磨30 h后粉末颗粒达到10 nm左右。采用放电等离子和真空烧结均获得了细小、均匀的TiAl和Ti3Al相组织,烧结组织晶粒在1μm左右。  相似文献   

2.
研究了TiH2-45Al-0.2Si-5Nb和TiH2-45Al-0.2Si-7Nb 2种粉末的机械合金化过程及放电等离子烧结的微观组织结构特征。结果表明,球磨过程中,在粉末粒度减小的同时有TiAl,Ti3Al和Ti2Al金属间化合物产生。球磨30h时,混合粉末所获得的粒度最小。球磨后粉末采用放电等离子烧结,可在很短的时间内完成烧结过程,烧结组织由细小的球状TiAl和Ti3Al相组成,且随烧结时间增加微观组织晶粒更为细小。  相似文献   

3.
本文研究了原位烧结法制备TiAl基超细晶/纳米晶合金。首先,通过球磨方式细化TiH2, Al, Si 和 Nb 粉,然后将球磨后粉末进行放电等离子烧结。利用X-射线衍射仪、扫描电镜和透射电镜分析球磨粉末及其烧结块体的特性,利用差热分析仪测试高温抗氧化性。试验结果显示,球磨过程中产生了非晶、Ti3Al纳米晶和TiH2的分解产物,球磨后粉末经高温烧结时,这些细小粉末迅速地转变成TiAl和Ti3Al相,TiAl相的晶粒尺寸为500nm~1μm,Ti3Al相为几个纳米,这种超细烧结组织在1000℃下非常稳定,而且具有良好的抗氧化性。  相似文献   

4.
研究了原位烧结法制备TiAl基超细晶/纳米晶合金。首先,通过球磨方式细化TiH2,Al,Si和Nb粉,然后将球磨后粉末进行放电等离子烧结。利用X射线衍射仪、扫描电镜和透射电镜分析球磨粉末及其烧结块体的特性,利用差热分析仪测试高温抗氧化性。试验结果显示,球磨过程中产生了非晶、Ti3Al纳米晶和TiH2的分解产物,球磨后粉末经高温烧结时,这些细小粉末迅速地转变成TiAl和Ti3Al相,TiAl相的晶粒尺寸为500 nm~1μm,Ti3Al相为几个纳米,这种超细烧结组织在1000℃下非常稳定,而且具有良好的抗氧化性。  相似文献   

5.
研究了TiH2-45Al-0.2Si-5Nb未球磨和球磨两种粉末的放电等离子烧结组织特征以及经1000℃、100h高温氧化后的氧化性能.结果表明,未经球磨粉末的烧结组织由层片状TiAl和Ti3Al相组成,而经球磨粉末的烧结组织由细小的颗粒状TiAJ和Ti3Al相组成.球磨粉末的烧结组织氧化速度低于未球磨粉末的烧结组织,形成了连续的Al2O3和TiO2混合氧化物层,具有良好的高温抗氧化性.  相似文献   

6.
采用双步球磨法和放电等离子烧结技术制备细晶Ti-45Al-5.5(Cr,Nb,B,Ta)(摩尔分数,%)合金,利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)等对球磨后的粉末形貌、相组成以及烧结块体的显微组织结构进行观察和分析,研究烧结温度对Ti-45Al-5.5(Cr,Nb,B,Ta)合金显微组织和力学性能的影响.结果表明:双步球磨粉末的颗粒形状较规则,其颗粒尺寸为10~40 μm,内部结构较均匀,主要由TiAl和Ti3Al相组成;放电等离子烧结后的块体主要由主相TiAl、少量的Ti3Al相及Ti2Al和TiB2相组成;当烧结温度为1 000 ℃时,烧结块体主要为等轴晶组织,等轴晶粒平均尺小于500 nm;当烧结温度为1 100 ℃时,烧结块体致密、无孔洞,部分等轴晶粒明显长大;随着烧结温度的升高,Ti-45Al-5.5(Cr,Nb,B,Ta)合金的显微硬度随之增大,抗压强度和抗弯强度却随之降低;压缩断口形貌分析表明:Ti-45Al-5.5(Cr,Nb,B,Ta)合金在1 000 ℃时,属于沿晶断裂,在1 100 ℃时,断口以沿晶断裂为主,存在部分解理断裂.弯曲断口形貌分析表明:Ti-45Al-5.5(Cr,Nb,B,Ta)合金以沿晶断裂为主,存在部分解理断裂.  相似文献   

7.
通过高能球磨结合放电等离子体烧结和热挤压工艺制备出超细晶Al-7Si-0.3Mg合金,采用X射线衍射分析、金相观察、扫描电镜和透射电镜等研究了球磨粉末热机械固结过程中微观组织的变化。对试样进行了拉伸力学性能测试。对超细晶Al-7Si-0.3Mg合金致密化机制和强化机理进行了分析。结果表明:在Al-7Si-0.3Mg合金粉末热机械固结过程中发生Al(Si,Mg)基体晶粒生长、动态再结晶、硅颗粒粗化以及GP区的析出。放电等离子体烧结样品固结质量较差,断裂强度为120 MPa;经进一步热挤压后,样品的固结质量显著提高,材料的屈服强度、抗拉强度和断裂伸长率分别为269、327 MPa和7.4%。  相似文献   

8.
对球磨后的粉末在1350°C保温2 h进行反应烧结,制备Ti-45Al-10Nb合金。对烧结坯料的显微组织,尤其对相组成,晶粒尺寸及颗粒的分布进行细致研究。结果表明,在此烧结条件下,材料的显微组织主要由Ti2Al C颗粒强化的双相γ+α2组织组成,相对于传统Ti Al基合金,该合金呈现出细小、均匀的显微组织。在细晶区,γ相和α2相的平均晶粒尺寸分别为(2.3±0.05)和(5.6±0.05)μm。此外,合金中存在大量位错,且γ相中的位错密度远高于α2相中的位错密度,对位错形成机理进行分析。  相似文献   

9.
研究TiH 2粉末的高能行星球磨规律,然后使用制备出的球磨粉末开展压制?真空烧结,评价烧结样品的显微组织特征。结果表明,TiH 2粉末的高能球磨可划分为3个基本阶段:球磨初期粉末粒度迅速细化;球磨中期粉末粒度逐步趋向最小极限尺寸,同时粉末粒径的均匀性和分布集中程度明显改善;在球磨的后期,粉末粒径又会发生粗化现象。因此,TiH2粉末的高能行星球磨存在一组最佳的工艺参数。高能球磨会改变TiH2粉末的脱氢特征温度,且粉体的D 50越小,特征温度下降幅度越大,与原料粉末相比,最大差值达83℃。对烧结样品的显微组织分析显示,通过由球磨TiH 2粉末所获得的烧结钛合金的晶粒度得到了显著地细化;当采用优化的工艺开展球磨TiH 2粉末制备时,通过压制和真空烧结可获得平均晶粒度在5μm以下的超细晶钛。  相似文献   

10.
采用高能球磨和放电等离子烧结(SPS)技术,制备成分为Ti-45Al-5.5(Cr,Nb,B,Ta)的TiAl合金块体,随后对TiAl合金进行热处理。研究在不同SPS烧结温度下制备的TiAl合金经过热处理后的显微组织和力学性能。结果表明:高能球磨后的合金粉末形状不规则,粉末颗粒尺寸大约为几十微米。XRD分析表明,机械球磨后的粉末由TiAl和Ti3Al两相组成;烧结后的Ti-45Al-5.5(Cr,Nb,B,Ta)合金块体主要是TiAl相,以及少量的Ti3Al和TiB2相。当烧结温度为900°C和1000°C时,合金的显微组织为双相结构,并伴随有一些细小的等轴γ晶粒和细小的针状TiB2相。当烧结温度从900°C上升到1000°C时,Ti-45Al-5.5(Cr,Nb,B,Ta)合金的显微硬度变化不大,抗压强度从1812MPa提高到2275MPa,压缩率从22.66%增加到25.59%,合金的断裂方式为穿晶断裂。  相似文献   

11.
双步球磨与放电等离子烧结制备细晶TiAl合金   总被引:1,自引:0,他引:1  
采用双步球磨法和放电等离子烧结(SPS)技术制备细晶Ti-47Al(at%)合金,利用扫描电子显微镜(SEM)、X射线衍射(XRD)仪以及透射电子显微镜(TEM)等分析测试手段对球磨后的粉末形貌结构、相组成以及烧结块体的显微组织结构进行观察和分析。结果表明:双步球磨粉末的颗粒形状较规则,其颗粒尺寸在20~40μm之间,内部结构均匀,主要由TiAl和Ti3Al相组成。放电等离子烧结后的块体主要由主相TiAl和少量的Ti3Al相及Ti2Al相组成,随着烧结温度的升高,Ti3Al相含量有所增加。当烧结温度为1000℃时,烧结块体获得的主要是等轴晶组织,等轴晶粒尺寸大多数在100~250nm之间。当烧结温度为1100℃时,烧结块体致密、无孔洞,等轴晶粒有明显长大的现象,显微组织主要由等轴状的TiAl相和片层状的Ti3Al相组成。  相似文献   

12.
为了改善93W-4.9Ni-2.1Fe合金的力学性能,对MA制备93W-4.9Ni-2.1Fe超细预合金粉末的烧结特性进行了研究。采用比表面吸附法测算了预合金粉末粒度,用X射线衍射仪对粉末晶粒尺寸进行测算,扫描电镜观察球磨粉末和试样拉伸断口的形貌,用金相显微镜对试样显微组织进行观察。结果表明:球磨50h后可得到粒度为0.29gm、晶粒尺寸为25.5nm、各元素分布均匀的超细93W-4.9Ni-2.1Fe预合金粉末:球磨50h的预合金粉末在1480℃烧结90min压坯,钨晶粒呈球形或近球形;合金抗拉强度、延伸率和相对密度分别为1025.4MPa,26.47%和99.45%,合金呈钨晶粒的穿晶解理断裂和粘结相的延性撕裂。  相似文献   

13.
采用双步球磨法和放电等离子烧结技术制备细晶Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y(摩尔分数,%)合金,并研究烧结温度、显微组织和力学性能之间的关系。结果表明:双步球磨粉末的颗粒形状较规则,其颗粒尺寸为20~40μm,主要由TiAl和Ti3Al相组成。放电等离子烧结后的块体由主相TiAl、少量的Ti3Al相及Ti2Al和TiB2相组成。当烧结温度为900°C时,烧结块体获得的主要组织是等轴晶组织,等轴晶粒尺寸大多数在100~200nm的范围内,合金的压缩断裂强度为2769MPa,压缩率为11.69%,抗弯强度为781MPa;当烧结温度为1000°C时,等轴晶粒明显长大,TiB2相明显增多,合金的压缩断裂强度为2669MPa,压缩率为17.76%,抗弯强度为652MPa。随着烧结温度的升高,合金的维氏硬度由658降低到616。压缩断口形貌分析表明,合金的断裂方式为沿晶断裂。  相似文献   

14.
球磨工艺对球磨粉末及其烧结组织的微观结构和形态都有重要的影响。本实验采用低能和高能球磨2种方式对Ti-7Al-0.2B(质量分数,%)合金粉末进行球磨,研究球磨过程中粉末组织和形态的变化,并将球磨后的粉末进行热压烧结,研究不同球磨方式对烧结组织中原位合成TiB增强相形态的影响。研究结果表明:低能球磨过程中,粉末颗粒间有机械合金化发生,其烧结组织中生成的TiB为细长态,在基体中分布均匀,没有联结的粗晶或成簇生长现象。对于高能球磨,粉末颗粒细化效果明显,颗粒平均尺寸降至1μm,球磨过程中除了机械合金化还形成了Ti(Al)过饱和固溶体,并在球磨后期形成了非晶结构。经高能球磨的粉末烧结后,组织中生成了均匀分布的纳米级TiB晶须。  相似文献   

15.
以元素粉末为原料,采用机械合金化方法结合放电等离子烧结工艺制备了Ti-8Mo-(0~9)Fe合金材料,并探讨了制备工艺对球磨粉体及烧结态合金性能的影响规律。结果表明,当铁含量为3%~9%(质量分数)时,球磨10 h粉体经900℃烧结可获得高致密度、并具有超细晶结构的钛合金材料,其显微组织主要由β-Ti相基体及fcc-Ti颗粒组成,其晶粒尺寸为130~490 nm,这是在钛合金块体材料中首次制备出fcc结构Ti相。在机械合金化过程中,Fe元素的加入可显著提高合金体系的非晶形成能力,并随Fe含量增加体系非晶形成能力增强,粉末非晶相比例增加,经10 h高能球磨后,即可合成具有良好的热稳定性的非晶/纳米晶Ti-Mo-Fe复合粉末。  相似文献   

16.
采用机械球磨方法和放电等离子烧结(SPS)技术制备Ti-45Al-7Nb-0.3W(摩尔分数,%)合金。利用XRD、SEM及TEM等分析方法对球磨处理前后粉末的形貌、相组成以及SPS烧结体的显微组织结构进行观察和分析,并研究该球磨合金粉SPS烧结的致密化过程。结果表明:气雾化Ti Al-Nb基合金粉末经球磨处理后,粉末产生大量变形、脆性断裂现象,粉末粒度明显减小;球磨处理使粉末中的β相消失、α相减少、γ相增多。Ti Al-Nb基合金球磨粉在520℃就开始快速SPS致密化过程,在1000℃即可基本达到完全致密;而在500℃加热时,球磨粉烧结热膨胀现象消失,体积收缩明显,这主要与球磨处理后粉末内部大量缺陷引起的回复过程有关。Ti Al-Nb基合金球磨粉SPS烧结体呈现由γ相和α_2相构成的双相组织,并且随着烧结温度的提高,α_2相含量有所增加;球磨处理后,粉末SPS烧结体中α_2/γ片层结构的形成受到抑制。  相似文献   

17.
采用机械合金化及放电等离子烧结方法制备超细晶/纳米晶TiAl基合金,并利用差热分析仪进行循环高温氧化试验,研究粉末机械合金化对烧结细晶粒TiAl基合金组织及高温氧化性能的影响。结果表明,球磨是获得细晶粒组织的原因,粉末经球磨及放电等离子烧结后,形成了细小、球状的TiAl和Ti3Al相组织;该细晶粒组织在高温循环氧化条件下显示出较高的抗氧化性,且随Nb量增加抗氧化性得到提高,升温阶段的氧化速率最快。  相似文献   

18.
以偏钨酸铵、可溶钴盐、可溶碳源为原料,经喷雾转化、煅烧、低温还原碳化制备超细晶WC-Co复合粉;采用同样成分配比及工艺,在煅烧后增加短时球磨工艺,制备出另一种超细晶WC-Co复合粉;分别以2种复合粉为原料,用放电等离子直接烧结制备超细WC-Co硬质合金。采用SEM、XRD、钴磁仪、矫顽磁力计、维氏硬度计等对复合粉形貌、合金显微组织与性能进行表征分析。结果表明,未短时球磨的粉末呈现出球形结构,WC颗粒被Co相粘结在一起,可观察到烧结颈并有异常长大晶粒,经过短时球磨工序制备的粉末为分散颗粒,2种粉末中Co相同时以fcc与hcp的结构存在,粉末WC晶粒尺寸约为0.26μm;未短时球磨的粉末制备的合金存在少量孔隙,致密度较低,有异常长大晶粒。短时球磨能有效提高粉末颗粒的分散性,减少烧结体中的显微组织缺陷,制备的合金综合性能得到提高。  相似文献   

19.
利用液氮球磨技术制备了纳米晶Al-10Zn-3Mg-1.8Cu(wt%)合金粉体材料。采用X射线衍射(XRD)、透射电镜(TEM)和差热分析仪(DSC)对材料在制备过程中的固态相变、晶粒尺寸和热稳定性进行了分析。结果表明,液氮球磨10h后Al—10Zn-3Mg-1.8Cu粉末晶粒达到45nm,微观应变随着球磨的进行逐渐增大。球磨过程中MgZn2和CuAl2相逐渐消失,合金元素超饱和固溶于α—Al之中。球磨粉末热处理过程中发生了回复和再结晶。球磨产生的大量微观应变和热处理时第二相的脱溶都降低了回复激活能,使回复温度下降。包括晶粒的长大、聚集位错的减少、孪晶、点缺陷和非平衡晶界等因素导致回复放热量增加。粉末晶粒的细化、细小Al2O3粒子的生成和第二相的脱溶析出则抑制了再结晶过程,使再结晶温度升高。纳米晶粒在436℃(0.77Tm)发生异常长大,合金粉末经过球磨后具备了较高的热稳定性。  相似文献   

20.
采用机械合金化及高温真空烧结制备细晶TiAl基合金,并对其烧结组织进行循环氧化试验,研究了TiAl细晶烧结组织的高温抗氧化性能。结果表明,粉末经球磨及1200℃高温真空烧结后,形成了细小、致密及球状的γ-TiAl基合金,晶粒尺寸在100~600nm。在960℃纯氧气氛条件下,经多次循环氧化的TiAl基合金没有发生相变,而且细小的晶粒没有发生长大现象,其形貌也没有未发生明显变化。利用差示扫描热量计进行的循环氧化实验表明,氧化发生在整个升温、等温及降温过程,氧化增重过程主要发生在第一个循环氧化的升温和高温等温阶段。TiH2-47Al-0.2Si-5Nb具有最佳的抗高温氧化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号