首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This paper studies the performance of contention based medium access control (MAC) protocols. In particular, a simple and accurate technique for estimating the throughput of the IEEE 802.11 DCF protocol is developed. The technique is based on a rigorous analysis of the Markov chain that corresponds to the time evolution of the back-off processes at the contending nodes. An extension of the technique is presented to handle the case where service differentiation is provided with the use of heterogeneous protocol parameters, as, for example, in IEEE 802.11e EDCA protocol. Our results provide new insights into the operation of such protocols. The techniques developed in the paper are applicable to a wide variety of contention based MAC protocols.   相似文献   

2.
Performance analysis of IEEE 802.11e contention-based channel access   总被引:5,自引:0,他引:5  
The new standard IEEE 802.11e is specified to support quality-of-service in wireless local area networks. A comprehensive study of the performance of enhanced distributed channel access (EDCA), the fundamental medium access control mechanism in IEEE 802.11e, is reported in this paper. We present our development of an analytical model, in which most new features of the EDCA such as virtual collision, different arbitration interframe space (AIFS), and different contention window are taken into account. Based on the model, we analyze the throughput performance of differentiated service traffic and propose a recursive method capable of calculating the mean access delay. Service differentiation functionality and effectiveness of the EDCA are investigated through extensive numerical and simulation results. The model and the analysis provide an in-depth understanding and insights into the protocol and the effects of different parameters on the performance.  相似文献   

3.
IEEE802.11eMAC草案规范对IEEE802.11无线局域网标准在QOS方面加以了补充。IEEE802.11e采用2种协调机制基于控制的综合协调可控信道接入方式HCCA和基于竞争的增强型分布式信道接入方式EDCA。主要评估EDCA和竞争空闲脉冲(contention-freeburst)CFB相结合时,在系统负载过载的情况下,改变性能参数后系统饱和吞吐量的变化,并分析系统性能参数对饱和吞吐量的影响,从而达到系统参数优化的作用。  相似文献   

4.
This paper presents an effective back-off mechanism to improve quality of service (QoS) for multimedia applications over the IEEE 802.11e enhanced distribution channel access (EDCA) standard. It can be done with proposed algorithm called dynamic fast adaptation for contention-based EDCA (DFA-EDCA) mechanism. The main concept of proposed DFA-EDCA mechanism is to use the exponential functions to adaptively tune the back-off parameters in IEEE 802.11e EDCA according to the changes on a network load within a short period. In this proposed mechanism an intra-access category (intra-AC) differentiation mechanism is provided to increase its back-off time randomly and achieve discrimination of same priority traffic on different stations. The performance evaluations have been conducted by using Network Simulator (NS-2). The simulation results show that the proposed DFA-EDCA mechanism has greatly outperformed the previous mechanisms such as non-linear dynamic adaptation scheme of the minimum contention window (CWmin-HA), dynamic adaptation algorithm of the maximum contention window (CWmax-adaptation), adaptive enhanced distributed coordination function and the conventional EDCA in terms of goodput, gain of goodput, packet delay, collision rate and channel utilization ratio (CUR). It has significantly reduced both packet delay and collision rate simultaneously together with an obviously increment in both goodput and CUR, which lead to the improvement in QoS for multimedia applications.  相似文献   

5.
IEEE802.11e标准中业务优先级不同的AC(access category)是通过设置不同的竞争窗口最大、最小值CWmax,CWmin和仲裁帧间隔值来体现的,如高优先级AC设置小的CWmin,CWmax和AIFS值.研究表明,EDCA对每个AC指定的默认参数值只适用于中等负载、节点数目少的网络场景,并不适用于负载较重、节点数目较多且链路动态变化的Ad hoc网络环境.提出了一种根据网络状况动态调整IEEE 802.11e EDCA的QoS参数的新方案I-ED-CA,该方案根据网络状态调整竞争窗口CW,并通过修改退避计数器值调整AIFS参数,使I-EDCA适合动态变化的Ad hoc网络环境,采用NS2仿真软件对EDCA改进协议I-EDCA进行仿真.仿真结果表明,随着网络中负载的增加,I-EDCA的吞吐量表现平稳,而EDCA吞吐量是下降的.另外,在业务公平性方面,对优先级不同的业务I-EDCA比EDCA的表现更公平.  相似文献   

6.
The emerging IEEE 802.11p standard adopts the enhanced distributed channel access (EDCA) mechanism as its Media Access Control (MAC) scheme to support quality-of-service (QoS) in the rapidly changing vehicular environment. While the IEEE 802.11 protocol family represents the dominant solutions for wireless local area networks, its QoS performance in terms of throughput and delay, in the highly mobile vehicular networks, is still unclear. To explore an in-depth understanding on this issue, in this paper, we develop a comprehensive analytical model that takes into account both the QoS features of EDCA and the vehicle mobility (velocity and moving directions). Based on the model, we analyze the throughput performance and mean transmission delay of differentiated service traffic, and seek solutions to optimally adjust the parameters of EDCA towards the controllable QoS provision to vehicles. Analytical and simulation results are given to demonstrate the accuracy of the proposed model for varying EDCA parameters and vehicle velocity and density.  相似文献   

7.
IEEE 802.11e enhanced distributed channel access (EDCA) is a distributed medium access scheme based on carrier sense multiple access with collision avoidance (CSMA/CA) protocol. In this paper, a model-based admission control (MBAC) scheme that performs real-timely at medium access control (MAC) layer is proposed for the decision of accepting or rejecting requests for adding traffic streams to an IEEE 802.11e EDCA wireless local area network (WLAN). The admission control strategy is implemented in access point (AP), which employs collision probability and access delay measures from active flows to estimate throughput and packet delay of each traffic class by the proposed unsaturation analytical model. Simulation results prove accuracy of the proposed analytical model and effectiveness of MBAC scheme.  相似文献   

8.
In the IEEE 802.11 wireless LAN (WLAN), the fundamental medium access control (MAC) mechanism—distributed coordination function (DCF), only supports best‐effort service, and is unaware of the quality‐of‐service (QoS). IEEE 802.11e enhanced distributed channel access (EDCA) supports service differentiation by differentiating contention parameters. This may introduce the problem of non‐cooperative service differentiation. Hence, an incompletely cooperative EDCA (IC‐EDCA) is proposed in this paper to solve the problem. In IC‐EDCA, each node that is cooperative a priori adjusts its contention parameters (e.g., the contention window (CW)) adaptively to the estimated system state (e.g., the number of competing nodes of each service priority). To implement IC‐EDCA in current WLAN nodes, a frame‐analytic estimation algorithm is presented. Moreover, an analytical model is proposed to analyze the performance of IC‐EDCA under saturation cases. Extensive simulations are also carried out to compare the performances of DCF, EDCA, incompletely cooperative game, and IC‐EDCA, and to evaluate the accuracy of the proposed performance model. The simulation results show that IC‐EDCA performs better than DCF, EDCA, and incompletely cooperative game in terms of system throughput or QoS, and that the proposed analytical model is valid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
An accurate model of IEEE 802.11e EDCA for a performance analysis that captures all major QoS features of the standard is introduced in this paper. Using the model, we derive the saturation throughput, and validate the accuracy of the proposed model through comparisons with other models via simulations.  相似文献   

10.
In this paper, we give an analytical justification how to control the QoS parameters using a throughput approximation model for IEEE 802.11e EDCA. Using the model, we propose a new parameter control algorithm which successfully achieves the dynamic parameter assignment under desired throughput ratio constraints.  相似文献   

11.
The distributed coordination function (DCF) scheme of IEEE 802.11 MAC protocol does not support any concepts of quality of service (QoS) but the enhanced distributed channel access (EDCA) scheme in IEEE 802.11e standard provides QoS according to access categories using different access parameters. However, the legacy DCF stations may be used together with EDCA stations. In this letter, we investigate and analyze the performance discrimination when EDCA and DCF stations operate simultaneously  相似文献   

12.
该文提出了一种新的应用于IEEE 802.11e EDCA (Enhanced Distributed Channel Access)中提供QoS(Quality of Service)的方法。这种方法是将几个时隙组合起来构成一个超时隙,每个超时隙的开始分配给不同的业务来进行发包。时隙的分配是根据各种业务的不同优先级来实现的。这种方法可以保证高优先级业务具有较大的吞吐量,较少的MAC延时和较低的丢包率。与802.11e EDCA草案中提出的不同冲突窗口大小的方法相比,这种方法具有可以提高吞吐量,降低丢包率,并能减小站点数目变化对高优先级业务吞吐量的影响等优点。这种新的提供QoS的方法优于不同冲突窗口大小的方法,在IEEE 802.11e EDCA中应用超时隙方法可以大大提高EDCA的性能。  相似文献   

13.
袁爽  武穆清  王彬 《通信技术》2010,43(2):152-154
在AdHoc无线自组织多跳网络中,IEEE802.11e协议采用了增强型分布信道接入机制,用于为实时多媒体业务提供有效的QoS保证机制。简单介绍和对比了802.11分布式协调功能和802.11e增强型分布信道接入机制两种信道接入机制,并通过使用网络仿真软件OPNET,模拟了实时的视、音频业务在802.11分布信道接入机制和802.11e增强型分布信道接入机制信道接入机制下在不同网络负载下的性能并进行了仿真分析。  相似文献   

14.
Although the IEEE 802.11e enhanced distributed channel access (EDCA) can differentiate high priority traffic such as real-time voice from low priority traffic such as delay- tolerant data, it can only provide statistical priority, and is characterized by inherent short-term unfairness. In this paper, we propose a new distributed channel access scheme through minor modifications to EDCA. Guaranteed priority is provided to real time voice traffic over data traffic, while a certain service time and short-term fairness enhancement are provided to data traffic. We also present analytical models to calculate the percentage of time to serve voice traffic and the achieved data throughput. Both analysis and simulation demonstrate the effectiveness of our proposed scheme.  相似文献   

15.
In this letter, we propose a three-dimensional Markov chain model for the 802.11e enhanced distributed channel access (EDCA) mode. This model can be used to compute the maximum sustainable throughput and service delay distribution for each priority class when under saturation load. The new framework models the performance impact of major quality-of-service (QoS)-specific features (e.g., CWMin, CWMax, AIFS, internal collision resolution) of the 802.11e EDCA mode, and hence can provide an analytical approach to pick the parameter values associated with EDCA to meet the QoS requirements of each priority.  相似文献   

16.
A unified model for the performance analysis of IEEE 802.11e EDCA   总被引:3,自引:0,他引:3  
Rapid deployment of IEEE 802.11 wireless local area networks (WLANs) and their increasing quality of service (QoS) requirements motivate extensive performance evaluations of the upcoming 802.11e QoS-aware enhanced distributed coordination function (EDCA). Most of the analytical studies up-to-date have been based on one of the three major performance models in legacy distributed coordination function analysis, requiring a large degree of complexity in solving multidimensional Markov chains. Here, we expose the common guiding principle behind these three seemingly different models. Subsequently, by abstracting, unifying, and extending this common principle, we propose a new unified performance model and analysis method to study the saturation throughput and delay performance of EDCA, under the assumption of a finite number of stations and ideal channel conditions in a single-hop WLAN. This unified model combines the strengths of all three models, and thus, is easy to understand and apply; on the other hand, it helps increase the understanding of the existing performance analysis. Despite its appealing simplicity, our unified model and analysis are validated very well by simulation results. Ultimately, by means of the proposed model, we are able to precisely evaluate the differentiation effects of EDCA parameters on WLAN performance in very broad settings, a feature which is essential for network design.  相似文献   

17.
Admission control in IEEE 802.11e wireless LANs   总被引:2,自引:0,他引:2  
Although IEEE 802.11 based wireless local area networks have become more and more popular due to low cost and easy deployment, they can only provide best effort services and do not have quality of service supports for multimedia applications. Recently, a new standard, IEEE 802.11e, has been proposed, which introduces a so-called hybrid coordination function containing two medium access mechanisms: contention-based channel access and controlled channel access. In this article we first give a brief tutorial on the various MAC-layer QoS mechanisms provided by 802.11e. We show that the 802.11e standard provides a very powerful platform for QoS supports in WLANs. Then we provide an extensive survey of recent advances in admission control algorithms/protocols in IEEE 802.11e WLANs. Our survey covers the research work in admission control for both EDCA and HCCA. We show that the new MAC-layer QoS schemes and parameters provided in EDCA and HCCA can be well utilized to fulfill the requirements of admission control so that QoS for multimedia applications can be provided in WLANs. Last, we give a summary of the design of admission control in EDCA and HCCA, and point out the remaining challenges.  相似文献   

18.
IEEE 802.11ah is an approved amendment to IEEE 802.11 wireless local area network (WLAN) standard to support growing demand for machine‐to‐machine (M2M) applications. To enable an efficient scheme for accessing the channel by a large number of stations (STAs) within the coverage of an access point, 802.11ah has developed a novel mechanism known as Restrictred Access Window (RAW). Here, a group of STAs attempts channel access during their designated RAW slot by following the carrier sense multiple access‐collission avoidance (CSMA‐CA)‐based enhanced distributed channel access (EDCA) mechanism. In this paper, we develop an analytical model for finding the nonsaturation/saturation throughput of 802.11ah WLAN under the RAW‐based channel access mechanism. We describe an analytical model for finding the average frame delay as well. The impact of the number of STAs and number of groups on network throughput and average delay are presented. We establish that the RAW mechanism can improve the throughput while the average frame delay gets reduced. The analytical results are validated by extensive simulation studies.  相似文献   

19.
As demand for broadband multimedia wireless services increases, improving quality of service (QoS) of the widely deployed IEEE 802.11 wireless LAN (WLAN) has become crucial. To support the QoS required by a wide range of applications, the IEEE 802.11 working group has defined a new standard: IEEE 802.11e. In this paper, we propose a measurement‐based dynamic media time allocation (MBDMTA) scheme combined with a concatenating window scheme to support real‐time variable bit rate (rt‐VBR) video and best‐effort (BE) data transmission using IEEE 802.11e enhanced distributed channel access (EDCA). To provide the QoS guarantee for rt‐VBR video, the proposed MBDMTA scheme dynamically assigns channel time to the rt‐VBR video based on the estimate of the required network resources. On the other hand, the concatenating window scheme controls the contention window (CW) ranges of different priority flows such that real‐time services always have higher channel access probability, thus achieving the capability of preemptive priorities. In addition, the concatenating window scheme preserves fairness among flows of the same class and attains high channel utilization under different network conditions. Simulation results demonstrate that the throughput and delay performance improve significantly for the transmission of rt‐VBR video and BE traffic as compared to those for the 802.11e EDCA specification. It is also revealed that combining the two proposed schemes provides seamless integration and reliable transmission of digital video and data service within the 802.11e EDCA framework. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
IEEE 802.11e supports the guaranteed quality of service (QoS) by providing different transmission priorities. IEEE 802.11e improves the media access control layer of IEEE 802.11 to satisfy the different QoS requirements by introducing two channel access functions: the enhanced distributed channel access (EDCA) and the hybrid coordination function (HCF) controlled channel access (HCCA). Signal quality may affect the available bandwidth and transmission rate, because the characteristic of communication channel in wireless environment is in random time‐variation manner. Generally a station using a lower transmission rate will occupy communication channel for a longer time and degrade system performance, which causes unfairness and cannot provide the guaranteed QoS for the stations with higher transmission rates. We propose a bandwidth control scheme (BCS) by combining the IEEE 802.11e enhanced distributed channel access function (EDCAF) protocol to overcome the guaranteed bandwidth issue in multirate environments. A multirate discrete Markov chain model is analyzed for the multirate transmission system in this paper. According to the obtained results, BCS improves performance especially in throughput and makes the different QoS requirements be processed efficiently and flexibly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号