首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, an optimum design method for buckling restrained brace frames subjected to seismic loading is presented. The multi-objective charged system search is developed to optimize costs and damages caused by the earthquake for steel frames. Minimum structural weight and minimum seismic energy which including seismic input energy divided by maximum hysteretic energy of fuse members are selected as two objective functions to find a Pareto solutions that copes with considered preferences. Also, main design constraints containing allowable amount of the inter-story drift and plastic rotation of beam, column members and plastic displacement of buckling restrained braces are controlled. The results of optimum design for three different frames are obtained and investigated by the developed method.  相似文献   

2.
Some aspects of truss topology optimization   总被引:3,自引:0,他引:3  
The present paper studies some aspects of formulations of truss topology optimization problems. The ground structure approach-based formulations of three types of truss topology optimization problems, namely the problems of minimum weight design for a given compliance, of minimum weight design with stress constraints and of minimum weight design with stress constraints and local buckling constraints are examined. The common difficulties with the formulations of the three problems are discussed. Since the continuity of the constraint or/and objective function is an important factor for the determination of the mathematical structure of optimization problems, the issue of the continuity of stress, displacement and compliance functions in terms of the cross-sectional areas at zero area is studied. It is shown that the bar stress function has discontinuity at zero crosssectional area, and the structural displacement and compliance are continuous functions of the cross-sectional area. Based on the discontinuity of the stress function we point out the features of the feasible domain and global optimum for optimization problems with stress and/or local buckling constraints, and conclude that they are mathematical programming with discontinuous constraint functions and that they are essentially discrete optimization problems. The difference between topology optimization with global constraints such as structural compliance and that with local constraints on stress or/and local buckling is notable and has important consequences for the solution approach.  相似文献   

3.
This paper illustrates the application of a two-level approximation method for truss topology optimization with local member buckling constraints and restrictions on member intersections and overlaps. Previously developed for truss topology optimization with stress and displacement constraints, that method is achieved by starting from an initial ground structure, and, combined with genetic algorithm (GA), it can handle both discrete and continuous variables, which denote the existence and cross-sectional areas of bar members respectively in the ground structure. In this work, this method is improved and extended to consider member buckling constraints and restrict intersection and overlap of members for truss topology optimization. The temporary deletion technique is adopted to temporarily remove buckling constraints when related bar members are deleted, and in order to avoid unstable designs, the validity check for truss topology configuration is conducted. By using GA to search in each possible design subset, the singularity encountered in buckling-constrained problems is remedied, and meanwhile, as the required structural analysis is replaced with explicit approximation functions in the process of executing GA, the computational cost is significantly saved. Moreover, for the consideration of restrictions on member intersecting and overlapping, the definition of such phenomena and mathematical expressions to recognize them are presented, and a new fitness function is developed to include such considerations. Numerical examples are presented to show the efficacy of the proposed techniques.  相似文献   

4.
In this paper we consider the optimization of general 3D truss structures. The design variables are the cross-sections of the truss bars together with the joint coordinates, and are considered to be continuous variables. Using these design variables we simultaneously carry out size optimization (areas) and shape optimization (joint positions). Topology optimization (removal and introduction of bars) is only considered in the sense that bars of minimum cross-sectional area will have a negligible influence on the performance of the structure. The structures are subjected to multiple load cases and the objective of the optimizations is minimum mass with constraints on (possibly multiple) eigenfrequencies, displacements, and stresses. For the case of stress constraints, we deal differently with tensile and compressive stresses, for which we control buckling on the element level. The stress constraints are imposed in correlation with industrial standards, to make the optimized designs valuable from a practical point of view. The optimization problem is solved using SLP (Sequential Linear Programming).  相似文献   

5.
This paper presents a formulation for optimal design of large scale, two and three dimensional framed structures. Von Mises equivalent stress constraints and displacement constraints are imposed at all points in the structure. Member size constraints and constraints based on Schilling's approach for member buckling are also imposed. Three example problems of varying degrees of difficulty are solved, using a gradient projection algorithm with state space design sensitivity analysis and substructuring. Results of these examples are analyzed and conclusions are presented.  相似文献   

6.
Optimum design of steel frames with stability constraints   总被引:1,自引:0,他引:1  
Optimum design algorithms based on the optimality criteria approach are proven to be efficient and general. They have the flexibility of accomodating variety of design constraints such as displacement, stress, stability and frequency in the design problem. The design methods developed recently, although considering one or more of these constraints, lack the necessity of referring to any relevant design code. The algorithm presented for the optimum design of street frames implements the displacement and combined stress limitations according to AISC. The recursive relationship for design variables in the case of dominant displacement constraints is obtained by the optimality criteria approach. The combined stress inequalities which include in-plane and lateral buckling of members are reduced into nonlinear equations of design variables. The solution of these equations gives the values of bounds for the variables in the case where the stress constraints are dominant in the design problem. The use of effective length in the combined stress constraints makes it possible to study the effect of the end rigidities on the final designs. The design procedure is simple and easy to program which makes it particularly suitable for microcomputers. A number of design examples are considered to demonstrate the practical applicability of the method. It is also shown that the design procedure can be employed in selecting the optimum topology of steel frames.  相似文献   

7.
A new suite of computational procedures for stress-constrained continuum topology optimization is presented. In contrast to common approaches for imposing stress constraints, herein it is proposed to limit the maximum stress by controlling the length scale of the optimized design. Several procedures are formulated based on the treatment of the filter radius as a design variable. This enables to automatically manipulate the minimum length scale such that stresses are constrained to the allowable value, while the optimization is driven to minimizing compliance under a volume constraint – without any direct constraints on stresses. Numerical experiments are presented that incorporate the following : 1) Global control over the filter radius that leads to a uniform minimum length scale throughout the design; 2) Spatial variation of the filter radius that leads to local manipulation of the minimum length according to stress concentrations; and 3) Combinations of the two above. The optimized designs provide high-quality trade-offs between compliance, stress and volume. From a computational perspective, the proposed procedures are efficient and simple to implement: essentially, stress-constrained topology optimization is posed as a minimum compliance problem with additional treatment of the length scale.  相似文献   

8.
Issues relating to the application of the discrete Lagrangian method (DLM) to the discrete sizing optimal design of skeletal structures are addressed. The resultant structure, whether truss or rigid frame, is subjected to stress and displacement constraints under multiple load cases. The members’ sections are selected from an available set of profiles. A table that contains sectional properties for all the available profiles is used directly in structural optimization. Each profile in the table is assigned by a unique profile number, which is used as the integer design variable for each of the structural members. It is proposed that we use a revised DLM search algorithm with static weighting to design trusses and rigid frames for minimum weight. Five examples are used to demonstrate the feasibility of the method. It is shown that, for monotonic as well as nonmonotonic constraint functions, the DLM is effective and robust for the discrete sizing design of skeletal structures.  相似文献   

9.
An optimality criterion and resizing formula for design variables are developed for obtaining minimum weight (volume if density is constant) of cantilever columns subjected to axial load constraints in the post-buckling region. A variational formulation is developed which forms the basis for the finite element analysis for the postbuckling analysis of cantilever columns. A method is presented to obtain absolute design variables from the converged design vector obtained through the resizing formula. Linear buckling constraints can be treated in the present study as special cases. Optimum configurations of cantilever columns of circular cross-section are obtained for three different axial load cases. Comparison of the present solution (linear buckling constraint) in the case of a cantilever column subjected to a concentrated tip load with a continuum solution shows the effectiveness of the present optimality criterion approach.  相似文献   

10.
The present paper investigates problems of truss topology optimization under local buckling constraints. A new approach for the solution of singular problems caused by stress and local buckling constraints is proposed. At first, a second order smooth-extended technique is used to make the disjoint feasible domains connect, then the so-called ε-relaxed method is applied to eliminate the singular optima from problem formulation. By means of this approach, the singular optimum of the original problem caused by stress and local buckling constraints can be searched approximately by employing the algorithms developed for sizing optimization problems with high accuracy. Therefore, the numerical problem resulting from stress and local buckling constraints can be solved in an elegant way. The applications of the proposed approach and its effectiveness are illustrated with several numerical examples. Received May 2, 2000  相似文献   

11.
Structural topology optimization problems have been traditionally stated and solved by means of maximum stiffness formulations. On the other hand, some effort has been devoted to stating and solving this kind of problems by means of minimum weight formulations with stress (and/or displacement) constraints. It seems clear that the latter approach is closer to the engineering point of view, but it also leads to more complicated optimization problems, since a large number of highly non-linear (local) constraints must be taken into account to limit the maximum stress (and/or displacement) at the element level. In this paper, we explore the feasibility of defining a so-called global constraint, which basic aim is to limit the maximum stress (and/or displacement) simultaneously within all the structure by means of one single inequality. Should this global constraint perform adequately, the complexity of the underlying mathematical programming problem would be drastically reduced. However, a certain weakening of the feasibility conditions is expected to occur when a large number of local constraints are lumped into one single inequality. With the aim of mitigating this undesirable collateral effect, we group the elements into blocks. Then, the local constraints corresponding to all the elements within each block can be combined to produce a single aggregated constraint per block. Finally, we compare the performance of these three approaches (local, global and block aggregated constraints) by solving several topology optimization problems.  相似文献   

12.
The paper deals with the effect of dimensional imperfections of truss members on the minimum weight design of a structure. It is assumed that for each element its imperfections cannot exceed given a priori maximum values, called tolerances. The incorporation of the considered imperfections into the design is achieved by diminishing the limit values of state functions by the product of assumed imperfections and appropriate sensitivities. Therefore, the given method allows the introduction of tolerances into the design in a relatively simple way. In the submitted paper both members’ cross-section and length imperfections are discussed. The paper is illustrated with several design examples, considering cases with multiple loading conditions and buckling analysis. The achieved optimum solutions for designs with admissible tolerances show significant differences in structural weight and material distribution compared to ideal structures (i.e. having nominal dimensions). The calculations for designs with buckling analysis also reveal changes in material distribution compared to the designs without buckling constraints.  相似文献   

13.
This paper focuses on discrete sizing optimization of frame structures using commercial profile catalogs. The optimization problem is formulated as a mixed-integer linear programming (MILP) problem by including the equations of structural analysis as constraints. The internal forces of the members are taken as continuous state variables. Binary variables are used for choosing the member profiles from a catalog. Both the displacement and stress constraints are formulated such that for each member limit values can be imposed at predefined locations along the member. A valuable feature of the formulation, lacking in most contemporary approaches, is that global optimality of the solution is guaranteed by solving the MILP using branch-and-bound techniques. The method is applied to three design problems: a portal frame, a two-story frame with three load cases and a multiple-bay multiple-story frame. Performance profiles are determined to compare the MILP reformulation method with a genetic algorithm.  相似文献   

14.
This paper investigated the general instability of cylindrical shells in which the stiffeners formed spirals along the length and at an arbitrary angle with the axis. Two loading conditions were considered: uniform axial and lateral compressions and torsion. The stress-strain relations of the stiffeners were developed by rotation of the strain tensor. The buckling determinate was obtained by introducing into the equilibrium equations the admissible displacement functions consistent with the end constraints, thereby enforcing equilibrium by satisfying the characteristic equations.

The buclking equations were programmed for a computer which rearched through a finite set of stress resultants for assigned values of spiral angle and modes and printed out the buckling load. The optimum structure weight of the stiffened shell was determined by iterating the design parameters at the required spiral angle so that the buckling load approached the applied load as a limit until the difference between these loads was within the design allowance.  相似文献   


15.
Optimum design of steel frames using harmony search algorithm   总被引:1,自引:0,他引:1  
In this article, harmony search algorithm was developed for optimum design of steel frames. Harmony search is a meta-heuristic search method that has been developed recently. It bases on the analogy between the performance process of natural music and searching for solutions to optimization problems. The objective of the design algorithm is to obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Strength constraints of AISC load and resistance factor design specification and displacement constraints were imposed on frames. The effectiveness and robustness of harmony search algorithm, in comparison with genetic algorithm and ant colony optimization-based methods, were verified using three steel frames. The comparisons showed that the harmony search algorithm yielded lighter designs.  相似文献   

16.
The advance in digital fabrication technologies and additive manufacturing allows for the fabrication of complex truss structure designs but at the same time posing challenging structural optimization problems to capitalize on this new design freedom. In response to this, an iterative approach in which Sequential Linear Programming (SLP) is used to simultaneously solve a size and shape optimization sub-problem subject to local stress and Euler buckling constraints is proposed in this work. To accomplish this, a first order Taylor expansion for the nodal movement and the buckling constraint is derived to conform to the SLP problem formulation. At each iteration a post-processing step is initiated to map a design vector to the exact buckling constraint boundary in order to facilitate the overall efficiency. The method is verified against an exact non-linear optimization problem formulation on a range of benchmark examples obtained from the literature. The results show that the proposed method produces optimized designs that are either close or identical to the solutions obtained by the non-linear problem formulation while significantly decreasing the computational time. This enables more efficient size and shape optimization of truss structures considering practical engineering constraints.  相似文献   

17.
This paper presents a simple evolutionary method for the optimum design of structures with stress, stiffness and stability constraints. The evolutionary structural optimization method is based on the concept of slowly removing the inefficient material and/or gradually shifting the material from the strongest part of the structure to the weakest part until the structure evolves towards the desired optimum. The iterative method presented here involves two steps. In the first step, the design variables are scaled uniformly to satisfy the most critical constraint. In the second step, a sensitivity number is calculated for each element depending on its influence on the strength, stiffness and buckling load of the structure. Based on the element sensitivity number, material is shifted from the strongest to the weakest part of the structure. These two steps are repeated in cycles until the desired optimum design is obtained. Illustrative examples are given to show the applicability of the method to the optimum design of frames and trusses with a large number of design variables.  相似文献   

18.
The theory of design sensitivity analysis of structures, based on mixed finite element models, is developed for static, dynamic and stability constraints. The theory is applied to the optimal design of plates with minimum weight, subject to displacement, stress, natural frequencies and buckling stresses constraints. The finite element model is based on an eight node mixed isoparametric quadratic plate element, whose degrees of freedom are the transversal displacement and three moments per node. The corresponding nonlinear programming problem is solved using the commercially available ADS (Automated Design Synthesis) program. The sensitivities are calculated by analytical, semi-analytical and finite difference techniques. The advantages and disadvantages of mixed elements in design optimization of plates are discussed with reference to applications.  相似文献   

19.
The feasibility of simultaneous optimization of member sizing and structural configuration of truss structures is demonstrated. The structural analysis is treated by the finite element displacement method and the optimization accomplished by the steepest descent method. Inequality constraints including limitations on both state variables (stress and displacement) and design variables (element cross sectional areas and nodal point placement) are included.The computational results show that in the presence of displacement constraints, the configuration of the optimum design sometimes differs considerably from the fully stressed design. The techniques can be extended to other structures such as beams, frames, plates, etc. and to include the possibility of Euler buckling.  相似文献   

20.
Topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. The objective of this type of approach is to distribute a given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized (that is, the compliance, or energy of deformation, is minimized) for a given load case. Thus, the material mass is restricted to a predefined percentage of the maximum possible mass, while no stress or displacement constraints are taken into account. This paper presents a different strategy to deal with topology optimization: a minimum weight with stress constraints Finite Element formulation for the topology optimization of continuum structures. We propose two different approaches in order to take into account stress constraints in the optimization formulation. The local approach of the stress constraints imposes stress constraints at predefined points of the domain (i.e. at the central point of each element). On the contrary, the global approach only imposes one global constraint that gathers the effect of all the local constraints by means of a certain so-called aggregation function. Finally, some application examples are solved with both formulations in order to compare the obtained solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号