首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The self‐transportation of mobile Leidenfrost droplets with well‐defined direction and velocity on millimetric ratchets is one of the most representative and spectacular phenomena in droplet dynamics. Despite extensive progress in the ability to control the spatiotemporal propagation of droplets, it remains elusive how the individual ratchet units, as well as the interactions within their arrays, are translated into the collective droplet dynamics. Here, simple planar ratchets characterized by uniform height normal to the surface are designed. It is revealed that on planar ratchets, the transport dynamics of Leidenfrost droplets is dependent not only on individual units, but also on the elegant coordination within their arrays dictated by their topography. The design of planar ratchets enriches the fundamental understanding of how the surface topography is translated into dynamic and collective droplet transport behaviors, and also imparts higher applicability in microelectromechanical system based fluidic devices.  相似文献   

2.
Surface ratchets can guide droplet transport for microfluidic systems. Here, we demonstrated the actuation of microgels encapsulated in droplets using a unidirectional nanotextured surface, which moves droplets with low vibration amplitudes by a ratcheting mechanism. The nanofilm carries droplets along the ratchets with minimal drop shape deformation to move the encapsulated soft cargo, i.e., microscale hydrogels. The tilted nanorods of the nanofilm produce unidirectional wetting, thereby enabling droplet motion in a single direction. Maximum droplet translation speed on the nanofilm was determined to be 3.5 mm∕s, which offers a pathway towards high throughput microgel assembly applications to build complex constructs.  相似文献   

3.
Applying advanced nanolithography techniques, various arrays of nanopillars on top of Si‐wafers are fabricated with all geometric parameters on the nanoscale. Additional chemical functionalization together with control over areal pillar density, height, and diameter allows the preparation of superhydrophobic surfaces exhibiting a wide range of contact angles (CA). Further improvement of this approach enables the production of step‐like wettability contrasts involving various CB–CB (Cassie‐Baxter) and CB–S (Smooth substrate)‐transitions. Such samples in combination with a high‐speed camera allow studying under optimized conditions quantitatively additional driving forces acting on a water droplet due to CA gradients. Experimentally it turns out that the maximum driving force on the droplet is well predicted by a simple model assuming circularly‐shaped base lines during the passage of a step‐like gradient of wettability. The provided study permits a comparison between maximum retention forces when tilting the substrate up to a critical angle and the presently determines maximum driving forces acting on a droplet due to a step‐like CA gradient. Both situations can be nicely described by a joint linear relation between normalized forces and CA hysteresis values with a slope close to theoretical values.  相似文献   

4.
Here, a smart fluid‐controlled surface is designed, via the rational integration of the unique properties of three natural examples, i.e., the unidirectional wetting behaviors of butterfly's wing, liquid‐infused “slippery” surface of the pitcher plant, and the motile microcilia of micro‐organisms. Anisotropic wettability, lubricated surfaces, and magnetoresponsive microstructures are assembled into one unified system. The as‐prepared surface covered by tilted microcilia achieves significant unidirectional droplet adhesion and sliding. Regulating by external magnet field, the directionality of ferromagnetic microcilia can be synergistically switched, which facilitates a continuous and omnidirectional‐controllable water delivery. This work opens an avenue for applications of anisotropic wetting surfaces, such as complex‐flow distribution and liquid delivery, and extend the design approach of multi‐bioinspiration integration.  相似文献   

5.
The classical capillary stability problem in a vertical circular cylinder is a special case of the more general problem of the stability of liquid above a capillary surface in a circular cylinder with arbitrary orientation of gravity. This problem can, of course, also be viewed as arbitrary cylinder orientation in a steadily accelerating spacecraft. The general (tilted) circular cylinder capillary stability problem is solved numerically by use of the Surface Evolver code for general tilt and general contact angle. Tens of thousands of combinations of contact angle, tilt angle, and Bond number are solved for with a global volunteer computing network running Surface Evolver. The results appear to be symmetric about 90 degree contact angle, as in the previous vertical cylinder studies, and not symmetric about 45 degree tilt.  相似文献   

6.
Different ways to reduce hysteresis in a capacitive-type thermally carbonized porous silicon (TC-PS) humidity sensor are studied and compared. Modification of the contact angle of the dielectric surface, enlargement of the pore size of dielectric, and operating the sensor at elevated temperature proved all to be possible ways to reduce hysteresis in a TC-PS humidity sensor. By variation of the carbonization temperature, we produced TC-PS surfaces of different contact angles. Although the hydrophobic surface prevents hysteresis, it also decreases considerably the sensitivity of the sensor. Enlargement of the pore size reduces and tunes the hysteresis loop into the higher relative humidity (RH) values. Also operation of the sensor only few degrees above room temperature was found to be a workable method to prevent hysteresis. However, a constant temperature is crucial for exact humidity measurement using a TC-PS sensor.  相似文献   

7.
Reliable characterization of wetting properties is essential for the development and optimization of superhydrophobic surfaces. Here, the dynamics of superhydrophobicity is studied including droplet friction and wetting transitions by using droplet oscillations on micropillared surfaces. Analyzing droplet oscillations by high‐speed camera makes it possible to obtain energy dissipation parameters such as contact angle hysteresis force and viscous damping coefficients, which indicate pinning and viscous losses, respectively. It is shown that the dissipative forces increase with increasing solid fraction and magnetic force. For 10 µm diameter pillars, the solid fraction range within which droplet oscillations are possible is between 0.97% and 2.18%. Beyond the upper limit, the oscillations become heavily damped due to high friction force. Below the lower limit, the droplet is no longer supported by the pillar tops and undergoes a Cassie–Wenzel transition. This transition is found to occur at lower pressure for a moving droplet than for a static droplet. The findings can help to optimize micropillared surfaces for low‐friction droplet transport.  相似文献   

8.
Polycrystalline A1N thin films were deposited by RF reactive magnetron sputtering on Pt(111)/Ti electrode films. The substrates were tilted by an angle ranging from 40 degrees to 70 degrees with respect to the target normal. A low deposition temperature and a high sputter gas pressure were found ideal for tilted growth. The resulting grain tilt angle amounts to about half the substrate tilt angle. For coupling evaluation, 5 GHz solidly mounted resonator structures have been realized. The tilted grain A1N films exhibited a permittivity in the 9.5-10.5 range and loss tangent of 0.3%. Two shear modes as well as the longitudinal mode could be clearly identified. The coupling coefficient k2(eff) of the fundamental thickness shear mode (TS0) was found to be about 0.5%, which is compatible with a c-axis tilt of about 6 degrees.  相似文献   

9.
Organic semiconductors (OSCs) are highly susceptible to the formation of metastable polymorphs that are often transformed by external stimuli. However, thermally reversible transformations in OSCs with stability have not been achieved due to weak van der Waals forces, and poor phase homogeneity and crystallinity. Here, a polymorph of a single crystalline 2,7‐dioctyl[1] benzothieno[3,2‐b][1]benzothio‐phene rod on a low molecular weight poly(methyl methacrylate) (≈120k) that limits crystal coarsening during solvent vapor annealing is fabricated. Molecules in the polymorph lie down slightly toward the substrate compared to the equilibrium state, inducing an order of greater resistivity. During thermal cycling, the polymorph exhibits a reversible change in resistivity by 5.5 orders with hysteresis; this transition is stable toward bias and thermal cycling. Remarkably, varying cycling temperatures leads to diverse resistivities near room temperature, important for nonvolatile multivalue memories. These trends persist in the carrier mobility and on/off ratio of the polymorph field‐effect transistor. A combination of in situ grazing incident wide angle X‐ray scattering analyses, visualization for electronic and structural analysis simulations, and density functional theory calculations reveals that molecular tilt governs the charge transport characteristics; the polymorph transforms as molecules tilt, and thereby, only a homogeneous single‐crystalline phase appears at each temperature.  相似文献   

10.
Polycrystalline AlN thin films were deposited by RF reactive magnetron sputtering on Pt(111)/Ti electrode films. The substrates were tilted by an angle ranging from 40/spl deg/ to 70/spl deg/ with respect to the target normal. A low deposition temperature and a high sputter gas pressure were found ideal for tilted growth. The resulting grain tilt angle amounts to about half the substrate tilt angle. For coupling evaluation, 5 GHz solidly mounted resonator structures have been realized. The tilted grain AlN films exhibited a permittivity in the 9.5-10.5 range and loss tangent of 0.3%. Two shear modes as well as the longitudinal mode could be clearly identified. The coupling coefficient k/sub eff//sup 2/, of the fundamental thickness shear mode (TSO) was found to be about 0.5%, which is compatible with a c-axis tilt of about 6/spl deg/.  相似文献   

11.
J.B. Sorge  M.J. Brett 《Thin solid films》2010,519(4):1356-1360
Porous structured films grown with the glancing angle deposition technique have been widely studied for thin film optical device applications. We report the use of ion assistance to modify the structural and optical properties of porous silicon dioxide and titanium dioxide columnar thin films grown at deposition angles of 70° and 85°. Optical characterization studies show that tilted columnar structures will undergo an increase in tilt angle and film density with increasing ion dose. These two trends contrast with unassisted films where film density and column tilt angle are primarily controlled by the deposition angle. Thus, a regime of film structures simultaneously exhibiting high film density and large column tilt angle is enabled by incorporating an ion-assisted process. The phisweep substrate motion algorithm for minimizing columnar anisotropy used in conjunction with ion-assisted deposition provides additional control over film morphology and expands the utility of this modified fabrication process.  相似文献   

12.
Developing a superhydrophobic oleophobic material is achieved by two criteria: low surface energy and properly designed surface morphology. The relationships among surface tensions, contact angles, contact angle hystereses, roll-off angles, and surface morphologies of such materials are studied. Numerical formulae related to the surface energy of liquids and solids are used to predict the wetting behavior of superhydrophobic and oleophobic materials. Using chemical and geometrical modifications, a superhydrophobic oleophobic surface was prepared. Good agreement between the predicted and measured contact angles and roll-off angles were obtained. The effect of the contact angle hysteresis on the roll-off angle is described to understand the motion of a droplet when the droplet begins to roll off.  相似文献   

13.
Well aligned ZnO nanowire arrays with high crystal quality were grown on Si substrates at a low temperature (50 degrees C) by hydrothermal method using a pre-formed ZnO seed layer. ZnO seeds were prepared via radio-frequency magnetron sputtering onto Si substrates. The morphologies of the ZnO nanowire arrays were shown by field emission scanning electron microscopy. X-ray diffraction spectra showed that the full width at the half maximum of the (0002) peak of the nanowire arrays without any heat treatment was only 0.07 degrees, indicating very high crystal quality. Furthermore, the room-temperature photoluminescence spectra of the ZnO nanowire arrays exhibited excellent UV emission. The special micro/nano surface structure of the ZnO nanowire arrays can enhance the dewettability for surfaces modified via low surface energy materials such as long chain fluorinated organic compounds. The surface of the ZnO nanowire arrays is also found to be superhydrophobic with a contact angle of 165 degrees +/- 1 degrees, while the sliding angle is 3 degrees.  相似文献   

14.
Droplet impact and equilibrium contact angle have been extensively studied. However, solidification contact angle, which is the final contact angle formed by molten droplets impacting on cold surfaces, has never been a study focus. The formation of this type of contact angle was investigated by experimentally studying the deposition of micro-size droplets (∼39 μm in diameter) of molten wax ink on cold solid surfaces. Scanning Electron Microscope (SEM) was used to visualize dots formed by droplets impacted under various impact conditions, and parameters varied included droplet initial temperature, substrate temperature, flight distance of droplet, and type of substrate surface. It was found that the solidification contact angle was not single-valued for given droplet and substrate materials and substrate temperature, but was strongly dependent on the impact history of droplet. The angle decreased with increasing substrate and droplet temperatures. Smaller angles were formed on the surface with high wettability, and this wetting effect increased with increasing substrate temperature. Applying oil lubricant to solid surfaces could change solidification contact angle by affecting the local fluid dynamics near the contact line of spreading droplets. Assuming final shape as hemispheres did not give correct data of contact angles, since the final shape of deposited droplets significantly differs from a hemispherical shape.  相似文献   

15.
本文通过FLUENT软件的凝固/熔化模型,模拟了接触角及质量分数对纯水和氯化钠溶液在冷表面冻结过程的影响,选择铜片为亲水表面,纳米膜表面为疏水表面,对液滴在不同表面特性条件下的冻结过程进行实验研究。结果表明:液滴在冷表面的冻结特性与接触角、质量分数有关。当溶液质量分数一定时,接触角越小,液滴冻结速度越快,完全冻结时间越短;在冻结过程的初始时刻,接触角越小,液滴底部温度越低;当冻结时刻相同、液滴高度一致时,液滴表面的温度和液相分数均比液滴内部低;接触角相同时,溶液质量分数与液滴的开始冻结温度成反比,与完全冻结时间成正比。对比实验结果与模拟可知,不同质量分数的氯化钠液滴在接触角为60°和100°时,冻结时间的变化趋势一致,但实验值大于模拟值。  相似文献   

16.
We have investigated the magneto-optical properties of highly ordered Co-Pt alloy nanowire arrays embedded in anodic aluminum oxide templates. The magnetic field-dependent Stokes parameters, Faraday rotation angle and ellipticity were investigated by an in-house magneto-optical measurement system. The extracted hysteresis loops are broadly consistent with magnetic hysteresis loops obtained from the vibrating sample magnetometer. The maximum Faraday rotation angle and ellipticity of these samples were examined as a function of nanowire composition. With an increase of platinum content from 9 at.% to 86 at.% in the as-deposited nanowire arrays, the maximum Faraday rotation angle per length decreases linearly from 1.39 x 10(3) degrees/cm to 1.58 x 10(2) degrees/cm. The maximum ellipticity shows a similar behavior with the composition. These linear relationships suggest a dilution model for the magnetic moment in the alloy nanowires. Our results indicate that magneto-optical measurements comprise an effective and sensitive method for monitoring the behavior of AAO-based magnetic nanowire arrays.  相似文献   

17.
《成像科学杂志》2013,61(7):389-397
Abstract

Micro-nano patterned surfaces have significant applications in various fields as they behave differently under the effect of catalysts, magnetic energy, electronic emission/absorption, optics and biological cells. Engineering these topologies demands a better understanding of the contact angle. The current contact angle measurement techniques assume the drop to be a perfect sphere, neglect gravitational and molecular dispersion effects; thereby leading to inaccuracies. This is because the micro-machined surfaces exhibit sub-micrometre scale porosity and pattern dimensions are comparable to the droplet size, resulting in composite interfaces at micro-nano scale. In this paper, the authors assessed the adaptability of conventional measurement techniques for textured surfaces and developed an algorithm that is based on curve fitting over sessile drop after edge detection. The algorithm performs edge detection, contact point identification and curve fitting and corrects uneven surfaces and was tested on micro-patterned surfaces fabricated over three different materials: polydimethylsiloxane, polystyrene and acrylic using laser.  相似文献   

18.
When a dielectric circular cylinder is obliquely illuminated, the scattering angle associated with the Airy caustics of the cylinder's primary rainbow depends on the tilt of the cylinder. We display records of the scattering pattern for a transparent poly(methyl methacrylate) fiber ranging from small values of tilt through values of tilt that are sufficiently large for the Airy caustics from both sides of the fiber to merge in a meridional plane containing the incident wave vector and the fiber's axis. The records are compared directly with the evolution of the caustic projected onto the observation plane, and certain qualitative features of the global evolution of the caustics are confirmed. Although the observations used laser illumination, they are relevant to anticipating the scattering by sunlit transparent tilted cylinders.  相似文献   

19.
In this letter, the authors demonstrate Drop‐on‐Demand printing of variable focus, polarization‐independent, liquid crystal (LC) microlenses. By carefully selecting the surface treatment applied to a glass substrate, the authors are able to deposit droplets with a well‐defined curvature and contact angle, which result in micron‐sized lenses with focal lengths on the order of 300–900 µm. Observations with an optical polarizing microscope confirm the homeotopic alignment of the LC director in the droplets, which is in accordance with the polarization independent focal length. Results show that microlenses of different focal lengths can be fabricated by depositing successive droplets onto the same location on the substrate, which can then be used to build up programmable and arbitrary arrays of microlenses of various lens sizes and focal lengths. Finally, the authors utilize the thermal dependency of the order parameter of the LC to demonstrate facile tuning of the focal length. This technique has the potential to offer a low‐cost solution to the production of variable focus, arbitrary, microlens arrays.
  相似文献   

20.
Biomimetic superhydrophobic surfaces: multiscale approach   总被引:1,自引:0,他引:1  
Nosonovsky M  Bhushan B 《Nano letters》2007,7(9):2633-2637
Micro- and macrodroplet evaporation and condensation upon micropatterned superhydrophobic surfaces built of flattop pillars are investigated with the use of an environmental scanning electron microscope. It is shown that the contact angle hysteresis depends upon both kinetic effects at the triple line and adhesion hysteresis (inherently present even at a smooth surface) and that the magnitude of the two contributions is comparable. The transition between the composite (Cassie) and wetted (Wenzel) states is a linear effect with the microdroplet radius proportional to the pitch over pillar diameter. It is shown that wetting of a superhydrophobic surface is a multiscale phenomenon that involves three scale lengths. Although the contact angle is the macroscale parameter, the contact angle hysteresis and the Cassie--Wenzel transition cannot be determined from the macroscale equations and are governed by micro- and nanoscale effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号