首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
TiO2–SiO2 composite nanoparticles containing hindered amine light stabilizers (HALSs) were prepared by encapsulation of commercially available TiO2–SiO2 nanoparticles using methyl methacrylate (MMA) and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (PMPM) copolymers through mini-emulsion polymerization. The Fourier transform infrared spectral analysis (FTIR) showed that the hindered amine light stabilizer PMPM was incorporated into the TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles. The X-ray photoelectron spectroscopy analysis (XPS) showed that the surface of TiO2–SiO2 nanoparticles was enriched with HALS moieties. The formation of P(MMA-co-PMPM) random copolymers on the surface of TiO2–SiO2 nanoparticles was determined by differential scanning calorimetry (DSC), and the percentage of the chemically grafted P(MMA-co-PMPM) coverage on the TiO2–SiO2 nanoparticles surface was 40.9 wt% determined by thermogravimetric analysis (TGA), which revealed that the TiO2–SiO2 nanoparticles were successfully encapsulated by MMA–PMPM copolymers. Scanning electron microscopy analysis indicated that the TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles were mainly homogeneous spherical shape particles, with an average size of about 90 nm. Rhodamine B (Rh.B) photocatalytic degradation study revealed UV-shielding characteristics for TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles and showed a remarkable decrease in photocatalytic activity of TiO2–SiO2 nanoparticles. These results indicated that TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles may be promising light stabilizers with covalent functionalization of polymeric HALS, which has little photocatalytic activity, and can be introduced into the weathering-resistant polymer materials to improve their application properties.  相似文献   

2.
The density d at a temperature of 25°C is measured by the hydrostatic weighing method, the Vickers microhardness H V is determined, and the fluctuation free volume fraction f g is calculated for glasses in the SrO-B2O3-SiO2 system with a constant strontium oxide content in the range from 35 to 45 mol %. It is demonstrated that the quantities H V and f g decrease and the density d increases with an increase in the SrO content.  相似文献   

3.
It is difficult to research on the surface structure of amorphous phase in fly ash during leaching reaction due to crystalline phase and complex structure. In the present work, in order to reveal the effects of leaching reaction on the surface structure of amorphous phase in fly ash, the modelling CaO-Fe2O3-Al2O3-SiO2 glass was prepared by the traditional melting methods. The leaching reaction of CaO-Fe2O3-Al2O3-SiO2 glass with 7.5 M KOH was investigated by spectroscopy, spectrophotometer and wet chemical method. The results show that the content of Q 1, Q 2, Q 3 and Q 4 of glass without corrosion was 4.21, 9.51, 23.03 and 52.55%, respectively, which shows that the network polymerization of glass is compact. The leaching reaction of glass can be described by the following equation: dS/dt = k/(r + S 0). Leaching in KOH for various times induces the content of Q 4 and Q 1 to be decreased, and Q 2 and Q 3 increased, resulted in the depolymerization of network and the surface glass dissolved in alkaline solution to form a gel phase. In stage one of leaching reaction, the rate of iron ion leached from glass surface was slow, which resulted in the small slope of straight-line relationship of leaching curve. In the following stage, the leaching rate of iron ion increased with the prolongation of time.  相似文献   

4.
This study considers the feasibility of uptake of cephalexin, an emerging contaminant, from aqueous solutions by using green local montmorillonite (GLM), montmorillonite coated with ZnO (ZnO/GLM) and montmorillonite coated with TiO2 (TiO2/GLM) in the presence of H2O2. Batch adsorption experiments were carried out as a function of pH, initial concentration of the cephalexin, adsorbent dosage, contact time, and temperature. Finally, the adsorbents were characterized by XRD, SEM and FTIR analyses. XRD patterns showed dramatic changes in the adsorbents after loading with the nanoparticles, confirming successful placing of the nanoparticles onto GLM. The GLM mineral surface after nanoparticle loading appears to be fully exposed and more porous with irregular shapes in particles diameters of 1-50 microns. FTIR analyses also confirmed dramatic changes in surface functional groups after modification with these nanoparticles. The results showed that the removal efficiency of cephalexin was better at lower pH values. Totally, the removal efficiency increased with increase in adsorbent dosage and contact time and decreased with concentration and temperature increase. The thermodynamics values of ΔG o and ΔH o revealed that the adsorption process was spontaneous and exothermic. In isotherm study, the maximum adsorption capacities (qm) were obtained to be 7.82, 17.09 and 49.26 mg/g for GLM, ZnO/GLM and TiO2/GLM, respectively. Temkin constant (B T ) showed that adsorption of cephalexin from solution was exothermic for all three adsorbents.  相似文献   

5.
Poly-3-amino-5-mercapto-1,2,4-triazole/TiO2 (p-AMTA/TiO2) composite was effectively synthesized over the copper surface by cyclic voltammetric technique and used as a protective coating against corrosion. The resulting polymeric composite was characterized using Fourier transform infrared spectroscopy. The presence of TiO2 particles in the polymer matrix was substantiated from X-ray diffraction pattern and energy-dispersive X-ray spectrum. The uniform dispersion of TiO2 particles in the polymeric matrix was confirmed by the scanning electron microscope images. The protective effect of composite coating was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization methods in 3.5 % NaCl medium. Impedance measurements showed that charge transfer resistance (R ct) values increased for polymeric composites which suggested the enhanced corrosion protection of copper. Further, the decrease in corrosion current density (i corr) values and shifting of corrosion potential (Ecorr) toward the cathodic direction confirmed the anticorrosive behavior of the polymeric composite. The reason for the higher protection of polymeric composite may be due to the well-dispersed TiO2 particles in the polymer matrix exhibiting the enhanced barrier properties to protect copper surface from corrosion. The defects in the coatings can be reduced by embedded TiO2 particles in the pores of the polymeric films to enhance the corrosion protection, consequently.  相似文献   

6.
The crystal structure of a low-temperature modification of the Li12Zn4(P2O7)5 compound has been determined by full-profile analysis from the X-ray powder diffraction data. The compound crystallizes in the monoclinic crystal system (a = 5.130(1) Å, b = 13.454(1) Å, c = 8.205(1) Å, β = 90.36(1)°, space group P21/n, Z = 4) and has a framework structure in which the zinc and lithium atoms statistically occupy equivalent positions.  相似文献   

7.
The crystal structure of Pb6O[(Si6Al2)O20)] is investigated using X-ray diffraction. The compound has tetragonal symmetry, space group I4/mmm, a = 11.7162(10) Å, c = 8.0435(12) Å, and V = 1104.13(2) Å3. The structure is refined to R 1 = 0.036 for 562 unique reflections with [F 0] ≥ 4σF. The structure contains two symmetrically independent positions of the Pb2+ cations coordinated by five O atoms (Pb2+-O2? = 2.34–2.68 Å). The TO4 tetrahedra (T = Si, Al) form tubular [(Si6Al2)O20] chains extended along the c axis. The O4 oxygen atom is not bonded to the Si and Al atoms and is octahedrally coordinated by six Pb atoms with the formation of an oxo-centered OPb6 octahedron. The assumption is made that, in some of lead silicate and aluminosilicate glasses, a number of oxygen atoms are located outside the tetrahedral structure and represent segregation centers of the Pb2+ cations due to the formation of oxo-centered complexes.  相似文献   

8.
A series of well-defined novel amphiphilic temperature-responsive graft copolymers containing PCL analogues P(αClεCL-co-εCL) as the hydrophobic backbone, and the hydrophilic side-chain PEG analogues P(MEO2MA-co-OEGMA), designated as P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) have been prepared via a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The composition and structure of these copolymers were characterized by 1H NMR and GPC analyses. The self-assembly behaviors of these amphiphilic graft copolymers were investigated by UV transmittance, a fluorescence probe method, dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. The results showed that the graft copolymers exhibited the good solubility in water, and was given the low critical temperature (LCST) at 35(±1) °C, which closed to human physiological temperature. The critical micelle concentrations (CMC) of P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) in aqueous solution were investigated to be 2.0 × 10?3, 9.1 × 10?4 and 1.5 × 10?3 mg·mL?1, respectively. The copolymer could self-assemble into sphere-like aggregates in aqueous solution with diverse sizes when changing the environmental temperature. The vial inversion test demonstrated that the graft copolymers could trigger the sol-gel transition which also depended on the temperature.  相似文献   

9.
Anhydrous ammonium pentaborate NH4B5O8 has been synthesized by thermal dehydration of larderellite NH4[B5O7(OH)2] · H2O at a temperature of 290°C for 7 h. The crystal structure has been determined from the X-ray powder diffraction data: a = 7.58667(5) Å, b = 12.00354(8) Å, c = 14.71199(8) Å, R p = 6.23, R wp = 7.98, R B = 12.7, R F = 8.95, and β-KB5O8 structure type. The double interpenetrating framework is formed by pentaborate groups, each consisting of a boron-oxygen tetrahedron and four triangles, in which all oxygen atoms are bridging. The thermal behavior of the NH4B5O8 compound has been investigated using thermal X-ray diffraction. As for other pentaborates of this type, the thermal expansion of the NH4B5O8 compound is anisotropic and reaches a maximum along the a axis. The thermal expansion coefficients are as follows: α a = 39 × 10?6, α b = 6 × 10?6, α c = 20 × 10?6, and α V = 65 × 10?6 °C?1.  相似文献   

10.
A new compound, CdPb2O2Cl2, is synthesized by the method of solid-phase reactions. The compound has monoclinic symmetry, space group C2/m, a = 12.392(8) Å, b = 3.8040(14) Å, c = 7.658(5) Å, β = 122.64(5)°, and V = 304.0(3) Å3. The structure contains one symmetrically independent position of the Pb2+ cation coordinated by three O2? anions (Pb2+-O2? = 2.29–2.34 Å) and five Cl? anions (Pb2+-Cl? = 3.35–3.57 Å). The Cd2+ cation has a symmetric coordination with the formation of two bonds Cd-O = 2.15 Å and four bonds Cd-Cl = 2.73 Å. The oxygen atom is tetrahedrally coordinated by three Pb2+ cations and one Cd2+ cation, which leads to the formation of oxo-centered heterometallic OPb3Cd tetrahedra. The tetrahedra are linked together into chains through common Pb atoms and into layered complexes due to sharing of the equatorial Cd atoms. The chlorine atoms are located above the cavities of the oxo-centered layer.  相似文献   

11.
The ramsdellite-type phases crystallizing in the Li2O-Fe2O3-TiO2 system in the course of synthesis in gaseous media at different oxygen partial pressures are studied. Solid solutions based on the ramsdellite structure with the composition Li2Ti3?xFe x O7 ? δ (0 ≤ x ≤ 0.7) are prepared in an oxidizing medium (PO2 = 1 atm) for the first time. Analysis of the results obtained by electron paramagnetic resonance and Mossbauer spectroscopy revealed that, in these solid solutions, all iron ions are in the oxidation state Fe+3.  相似文献   

12.
A new compound of (Rb,K)2Cu3(P2O7)2 is obtained by high-temperature reactions from a mixture of RbNO3, KNO3, Cu(NO3)2, and (NH4)4P2O7. The crystal structure was solved by direct methods and refined to R 1 = 0.056 for 5022 independent reflections. The compound belongs to a rhombic crystal system, P212121, Z = 8, a = 9.9410(7) Å, b = 13.4754(6) Å, c = 18.6353 (3) Å, and R = 0.056. The basis of the structure is a complex copper-phosphate skeleton of the composition of [Cu3(P2O7)2]2–, which can be regarded as consisting of two types of heteropolyhedral layers parallel to the (001) plane. The layers are alternated with each other, forming a frame, in the cavities of which the positions of alkali cations are located, statistically populated with K+ and Rb+ ions. Based on the refined populations of the positions of alkali cations, an exact chemical formula of the compound can be written as Rb1.28K0.72Cu3(P2O7)2. The compound is the most complex among those known to this day of the composition of A2 IB3 II(P2O7)2 (A = Li, Na, K, Rb, or Cs; B = Ni, Cu, or Zn).  相似文献   

13.
Graft polymerization onto the cellulose is one way to produce semisynthetic copolymers and semiconductors were hardly used as initiators. Maleylated cellulose (MC) with different degree of carboxyl groups was synthesized and degree of carboxyl groups was determined using titration method. Then the graft copolymers of acrylamide (AM) on MC were synthesized by titanium dioxide semiconductor photoinitiator in aqueous suspension under sunlight. The effect of different parameters, such as the degree of carboxyl groups, degassing of atmosphere, reactor type, light source, MC/AM ratio, and initiator concentration, was evaluated in the synthesis of graft copolymers. MC with a high degree of carboxyl groups about 2.8 mmol g?1 was selected for graft photopolymerization. Maximum monomer conversion (55%) for Maleylated cellulose-g-polyacrylamide (MC-g-PAM) was achieved with 0.5 mg TiO2, MC/AM = 0.056, argon atmosphere, sunlight source, and double quartz tube reactor. The maximum amount of equilibrium swelling (41 g g?1) was achieved for MC-g-PAM with 34% monomer conversion. The resulting graft copolymers were characterized by FT-IR, SEM, and TGA. Synthesis of MC-g-PAM using TiO2 nanoparticles (NPs) as the initiator was done successfully that shows the TiO2 NPs are useable in graft polymerization of acrylamide monomers onto the MC under sunlight.  相似文献   

14.
Silicophosphate glasses of nominal composition (P2 O 5 50%-SiO2 30%-Na2O 20%) and Nd2 O 3 additive (0.5 and 2 wt%) were prepared and dielectric behavior has been studied over a temperature range (302–483 K) in the frequency range (0.5 - 3243 kHz). Frequency dependence of AC conductivity (σ ac), has been explored using the universal power law. Disparity of the frequency exponent (s) with temperature was examined in terms of diverse conduction mechanisms. The principal conduction mechanisms were found correlated to both barrier hopping (CBH) and quantum mechanical tunneling (QMT) models. Temperature dependence of σ ac (ω) showed a linear increase with different frequencies. In addition, the capacitance, loss tangent, dielectric loss and dielectric constant were calculated over variable temperature ranges and frequencies.  相似文献   

15.
The solid-solution regions in the MeSm2S4-MeS and MeSm2S4-Sm2S3 (Me = Ca, Ba) systems are revealed. The average ion, cation, and anion transport number of the synthesized solid electrolytes xSm2S3[Ca(Ba)S] · (100 ? x)Ca(Ba)Sm2S4 (x = 1?10 mol %) are determined by the electromotive force (emf) method with the use of concentration cells with and without transfer. In the phases under investigation, the ion transfer in the temperature range 673–723 K is provided by sulfide ions (\(t_{S^2 } \) = 1.00±0.02). The diffusion coefficients of S2? ions in the solid electrolytes are determined by potentiostatic chronoamperometry. A vacancy mechanism of defect formation is proposed. It is demonstrated that the transport characteristics of the solid electrolytes based on the CaSm2S4 compound are worse than those of the solid electrolytes based on the BaSm2S4 compound.  相似文献   

16.
The addition of titanium dioxide nanoparticles (TiO2 nanoparticles) to a water-based varnish used for finishing tropical woods was studied. Three different concentrations of TiO2 nanoparticles (0%, 1.0%, and 1.5%) were evaluated. The nanoparticles were characterized by means of the transmission electron microscopy and an X-ray diffractometer. The varnish prepared was evaluated for its viscosity, adhesion of the film to the wood, water absorption, and the effects of natural weathering on the color and quality of the varnish. It was found that viscosity decreases as the concentration of TiO2 nanoparticles increases, while no variation was found in the thickness of the film. Except for Gmelina arborea and Tectona grandis, the adhesion was not statistically affected. It was found that, in the 9 species tested, incorporation of TiO2 nanoparticles decreased the values of water absorption. The evaluation of natural weathering showed that the varnish with no added TiO2 nanoparticles degraded completely after 1 year of weathering exposure, while the modified varnish film endured. Less color change was observed in lumber treated with the varnish containing TiO2 nanoparticles. The best performance of the varnish in the nine tropical woods used was observed when TiO2 nanoparticles were added at 1.5% concentration.  相似文献   

17.
Layered ceramics based on bismuth–calcium cobaltite with varied cobalt oxide contents is synthesized by the solid-phase method, the ceramics phase composition is determined, and the microstructure, thermal expansion, electroconductivity, and thermal electromotive force are investigated. The formation of just one compound, ternary oxide composed of Bi2Ca2Co1.7O y , is established within the quasi-binary Bi2Ca2O5–CoO z system. The effect of the cobalt oxide content on the Bi2Ca2Co x O y ceramics’ microstructure and physicochemical properties is analyzed. The single-phased ceramic sample Bi2Ca2Co1.7O y demonstrated the highest power factor value among all the investigated samples—26.0 μW/(m K2) at a temperature of 300 K. This sample showed the lowest value of the thermal linear expansion coefficient of 9.72 × 10–6 K–1.  相似文献   

18.
A variety of TiO2@SBA-15 supporters with various TiO2 loadings were synthesized using a facile sol-gel method. Gold (Au)-based catalysts were prepared with an environmentally benign and economical bioreduction method via Cacumen Platycladi (CP) leaf extract and immobilized on various TiO2@SBA-15 supporters with different TiO2 loadings. The as-prepared biosynthesized Au catalysts were applied in the liquid-phase cyclohexane oxidation. The results showed that the Au nanoparticles were well-dispersed on TiO2@SBA-15, and the Au existed as Au0. These biosynthesized Au catalysts are promising for cyclohexane oxidation, achieving a turnover frequency up to 3,426 h?1 with a 14.1% cyclohexane conversion rate.  相似文献   

19.
A cathode material for lithium-ion batteries–LiNi1/3Co1/3Mn1/3O2–was prepared by solution combustion synthesis and characterized by XRD, SEM, and galvanostatic charge/discharge cycling. The sample calcined at 950°C for 10 h showed best charge/discharge performance. An initial discharge capacity (C) of 150.5 mA h g–1 retained 95.7% of its value after 75 charge/discharge cycles at Ic = 14 mA g–1 (0.2C rate), Id = 70 mA g–1 (0.5C rate).  相似文献   

20.
Explored was the influence of compacting pressure (P) and green density (ρ) on the properties of Zr-doped mineral-like pyrochlore ceramics Y2(Ti1 – x Zr x )2O7 (x ≤ 0.3) prepared by SHS method. The optimal ρ values that provide minimal porosity and maximal mechanical strength of synthesized ceramics were found. An increase in ρ was found to decrease combustion temperature and increase pyrochlore lattice parameter a. Green density was also found to affect phase composition of the SHS-produced ceramics under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号