首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为了提高切削质量,减少刀具磨损,采用响应曲面法对最小微量润滑辅助切削的主要工艺参数进行优化。以钛合金TC4为切削对象,把工件表面粗糙度和刀具磨损作为评价指标,采用Minitab设计切削速度、进给量、喷射压力三因素的Box-Behnken试验。利用方差和拟合残差概率分布分析三因素的显著性及交互作用,并结合试验检验所建表面粗糙度和刀具磨损二阶响应预测模型的有效性。响应曲面法优化后的最佳工艺参数为切削速度25 m/min、进给量0.103 mm/r、喷射压力0.1 MPa,此时得到的表面粗糙度和刀具磨损量分别为1.195、151.9 μm,与预测值的误差分别为5.1%、2.91%。说明基于响应曲面法的微量润滑辅助切削钛合金表面粗糙度和刀具磨损量预测模型准确有效。  相似文献   

2.
以TC4钛合金棒料为试验对象,以数控车床作为试验平台,对空冷辅助车削钛合金端面的切削速度、背吃刀量、进给量等主要工艺参数进行正交试验研究。采用灰色关联分析法,对工件表面粗糙度、刀具磨损量以及工件表面硬度等工艺目标进行综合评价,使多工艺目标转化为单一考察指标,得到了最佳的工艺优化组合方案,并提高了试验效率。研究结果证明:用灰色关联分析法优化后的工艺参数能够有效降低工件表面粗糙度,减少刀具磨损,使工件硬度更符合切削要求。  相似文献   

3.
为提高数控车削45~#调质钢的加工表面粗糙度,基于正交试验法和单因素试验法设计车削试验,通过极差和方差分析法对试验结果进行分析,研究切削用量三要素(切削速度、进给量和背吃刀量)对加工表面粗糙度的影响。结果表明:影响车削加工表面粗糙度的显著性参数依次为切削速度背吃刀量进给量;单因素试验法分析结果表明加工表面粗糙度随切削速度的增加而降低,随进给量和背吃刀量的增加而增大。  相似文献   

4.
以强力旋压加工后的锡青铜连杆衬套为研究对象,采取田口试验优化算法研究了切削速度、进给量和背吃刀量对连杆衬套表面粗糙度的影响。通过设计正交试验表对精车后衬套表面粗糙度进行测量并且对比精车后轮廓算术平均偏差Ra和微观不平度10点高度偏差Rz的信噪比极差值,然后分析这3个加工参数对于刀具寿命的影响,最后得到了3种参数对于表面粗糙度的影响程度为:进给量切削速度背吃刀量,以及传统经验取值范围内的最优参数组合:车削速度为190mm/min;进给量为0.04mm/r;背吃刀量为0.2mm。  相似文献   

5.
使用PCD刀具对氮化硅陶瓷内孔进行切削试验,首先研究氮化硅陶瓷材料的去除机理,主要包括脆性去除和塑性去除,且以脆性去除为主。其次,研究刀具前角、切削速度、背吃刀量和进给量对切削力的影响。结果表明:刀具前角对切削力的影响不明显;随切削速度、背吃刀量和进给量的增加,切削力均增大,且背向力大于进给力和主切削力。最后,重点研究各参数对内孔侧壁表面粗糙度的影响。结果表明:进给量对表面粗糙度的影响最显著,其次是背吃刀量和切削速度,刀具前角几乎没有影响,且当刀具前角为-5°,切削速度为32.97m/min,背吃刀量为0.10mm,进给量为0.08mm/r时,可以得到较好的表面粗糙度和刀具寿命的综合效益。   相似文献   

6.
γ-TiAl合金因具有良好的高温物理和力学性能而广泛应用于航空航天、汽车等领域。通过γ-TiAl合金铣削加工正交试验,分析了切削参数对加工表面粗糙度的影响规律。研究表明:γ-TiAl合金铣削加工表面粗糙度的重要影响因素为背吃刀量和每齿进给量,其次是切削速度;切削速度、背吃刀量、每齿进给量之间的两两交互作用对表面粗糙度的影响不显著;表面粗糙度随着背吃刀量和每齿进给量的增加而增大,随着切削速度的增加先增大后减小。利用偏最小二乘回归法建立了基于切削参数的表面粗糙度的数学预测模型,通过模型的相关性分析以及F检验,验证了该模型具有较好的精度,能够满足表面粗糙度的一般性预测要求。在此次试验条件下获得最小表面粗糙度的切削参数为切削速度v_c=40 m/min、每齿进给量f_z=0.005 mm/z和背吃刀量a_p=0.05 mm。  相似文献   

7.
300 M超高强钢车削加工表面质量   总被引:4,自引:3,他引:1       下载免费PDF全文
目的研究切削参数对300M超高强度钢加工表面质量的影响。方法选用硬质合金刀具车削加工300M超高强度钢,研究切削参数对表面加工硬化、残余应力及表面粗糙度的影响。通过HXD-1000显微硬度检测仪、X-350A型X射线应力测试系统、TR240表面粗糙度测量仪对实验过程进行检测分析。通过单因素试验研究影响表面粗糙度的主次因素,并通过正交试验,以进给量f、切削速度v、刀尖圆弧半径rε、背吃刀量a_p为变量建立表面粗糙度的预测模型。结果背吃刀量a_p=0.2 mm,切削速度v为60~120 m/min,进给量f为0.1~0.25 mm/r时,300M钢经切削加工后,维氏硬度在467~550HV范围内变化。切削速度从60 m/min增大至200 m/min时,表面残余应力从压应力-59.13 MPa变为拉应力257.33 MPa,次表层残余应力的最大残余压应力从-147.46 MPa增大到-422.65 MPa,并且层深至50μm左右处,工件材料的加工变质层结束。结论表面硬度随着进给量和切削速度的增大而减小,并且越往里层,硬度越低,直至达到基体的硬度。影响表面粗糙度的最主要因素为进给量,其次是刀尖圆弧半径,再次为切削速度,背吃刀量对表面粗糙度的影响最小。建立的表面粗糙度预测模型通过了试验验证,具有很高的加工精度。  相似文献   

8.
基于正交试验,采用Al_2O_3-TiCN涂层硬质合金刀具干切削N型HT250灰铸铁,研究切削速度、进给量和背吃刀量对表面粗糙度的影响及机制,为N型HT250的切削提供理论依据。结果表明:Al_2O_3-TiCN涂层硬质合金刀具切削N型HT250的表面粗糙度优于普通HT250,尤其在低切削速度(v_c=100 m/min)的情况下,N型HT250表面粗糙度更具优异性;对N型HT250表面粗糙度影响最显著的因素是进给量,其次是背吃刀量,切削速度对表面粗糙度的影响程度相对较小;表面粗糙度随着进给量的增加而显著增加,随着背吃刀量的增加先减小后增大,当a_p=1 mm时,表面粗糙度综合表现最佳。  相似文献   

9.
基于全因子实验设计,进行了轴向超声振动车削实验,研究了6061铝合金轴向振动车削参数(切削速度、背吃刀量、进给量)对表面粗糙度的影响,并对表面粗糙度进行了预测。对实验数据进行极差分析、切削用量交互作用分析,得到了各切削参数对表面粗糙度的影响。基于多元回归法与指数函数法分别建立了表面粗糙度预测模型,对预测模型进行显著性检验,并与测试实验结果相对比。实验结果表明,指数函数预测模型可以更好地对表面粗糙度进行预测,预测精度较高,对6061铝合金轴向振动车削参数的选择提供了依据。  相似文献   

10.
KDP晶体加工中工艺参数的选择会直接影响工件的表面质量。为了获得最优的工艺参数组合,文章基于IBM SPSS Statistics 19.0软件对实验过程进行正交设计,并对试验结果进行单因变量多因素方差分析,得到了各因素对表面粗糙度的影响强弱顺序,优化出了最佳工艺参数组合,并进行KDP晶体的切削实验验证。实验结果表明:各因素对表面粗糙度影响的强弱顺序为进给量、主轴转速、背吃刀量、刀具圆弧半径;最佳的工艺参数组合为刀具圆弧半径r=9mm,进给量f=26μm/r,背吃刀量ap=17μm,转速n=300r/min;利用优化后的工艺参数进行KDP晶体切削实验,得到表面粗糙度值为Ra=0.011μm的光滑表面,获得了理想的加工效果。  相似文献   

11.
The present work concerns an experimental study of hard turning with CBN tool of AISI 52100 bearing steel, hardened at 64 HRC. The main objectives are firstly focused on delimiting the hard turning domain and investigating tool wear and forces behaviour evolution versus variations of workpiece hardness and cutting speed. Secondly, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) are analysed and modeled. The combined effects of the cutting parameters on machining output variables are investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of machining parameters with respect to objectives (surface roughness and cutting force values). Results show how much surface roughness is mainly influenced by feed rate and cutting speed. Also, it is underlined that the thrust force is the highest of cutting force components, and it is highly sensitive to workpiece hardness, negative rake angle and tool wear evolution. Finally, the depth of cut exhibits maximum influence on cutting forces as compared to the feed rate and cutting speed.  相似文献   

12.
为了探究CVD金刚石厚膜刀具切削参数(包括刀具后角、刀尖圆弧半径、切削速度、进给量和切削深度)对切削力和被加工表面粗糙度影响的初步规律,采用单因素方法进行了一系列CVD金刚石厚膜刀具车削仿真和试验研究。结果表明:AdvantEdge有限元仿真软件模拟切削力过程有一定的准确性;在试验参数范围内,随着刀具后角的增大,切削力和表面粗糙度都是先减小后增大,当后角为11°时,切削力和表面粗糙度值最小;随着刀尖圆弧半径的增大,切削力逐渐增大,而表面粗糙度则逐渐减小;随着切削速度的增大,切削力和表面粗糙度都是先增大后减小,当切削速度为90m/min时,切削力和表面粗糙度值最大;随着进给量的增大,切削力和表面粗糙度都显著增大;随着切削深度的增大,切削力和表面粗糙度都逐渐增大,但切削深度对表面粗糙度的影响较小。  相似文献   

13.
In this paper, empirical models for tool life, surface roughness and cutting force are developed for turning operations. Process parameters (cutting speed, feed rate, depth of cut and tool nose radius) are used as inputs to the developed machinability models. Two important data mining techniques are used; they are response surface methodology and neural networks. Data of 28 experiments when turning austenitic AISI 302 have been used to generate, compare and evaluate the proposed models of tool life, cutting force and surface roughness for the considered material.  相似文献   

14.
目的 为了进行硬态车削绿色制造与工艺性能协同优化研究,提出一种同时考虑碳排放量和表面粗糙度的多目标优化方法。方法 首先,通过分析硬态车削过程中切削参数、工件材料、刀具材料等因素对切削功率的影响建立碳排放目标函数,针对工件的表面粗糙度受到切削条件、工件材料、刀具材料等诸多因素的影响,利用正交试验和广义回归神经网络建立轴承硬态车削表面粗糙度目标函数。然后,考虑加工过程中机床特性和硬车实际工况等约束条件,建立以切削参数为优化变量,以碳排放量和表面粗糙度为优化目标的多目标优化模型,引入权重系数将其转化为单目标优化模型。最后,利用遗传算法对优化模型进行优化求解,深入分析切削参数对优化目标的影响。结果 在工厂实际轴承产品硬车试验中验证了优化模型的有效性,结果表明,切削速度为225 m/min、进给量为0.08 mm/r、背吃刀量为0.10 mm时,碳排放量和表面粗糙度的综合优化指标最低。相比优化前,虽然碳排放量上升了13.05%,但表面质量提升了34.44%。结论 研究结果对面向绿色制造的轴承硬车工艺参数优化提供理论方法有重要意义。  相似文献   

15.
Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker’s microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.  相似文献   

16.
以加工表面粗糙度与切削用量的关系为研究对象,采用单因素试验方法,利用硬质合金刀具对45调质钢进行湿式车削试验,测量得到选定参数条件下的加工表面粗糙度值,对试验结果进行分析。结果表明:在试验采用的切削参数范围内,表面粗糙度随进给量的增加而近似成线性增加;背吃刀量从0.05 mm增加到0.10 mm时,表面粗糙度减小,从0.10mm到0.20 mm时,表面粗糙度增加;切削速度从500 r/min到1 000 r/min时,加工表面粗糙度呈减小趋势,从1 000r/min到1 400 r/min时出现略为增加的趋势;该研究对实际加工45调质钢具有一定的指导意义,也可为合理选择切削用量提供理论参考。  相似文献   

17.
The present work focuses on the two of the techniques, namely design of experiments and the neural network for predicting tool wear. In the present work, flank wear, surface finish and cutting zone temperature were taken as response (output) variables measured during turning and cutting speed, feed and depth of cut were taken as input parameters. Predictions for all the three response variables were obtained with the help of empirical relation between different responses and input variables using design of experiments (DOE) and also through neural network (NN) program. Predicted values of the responses by both techniques, i.e. DOE and NN were compared with the experimental values and their closeness with the experimental values was determined. Relationship between the surface roughness and the flank wear and also between the temperature and the flank wear were found out for indirect measurement of the flank wear through surface roughness and cutting zone temperature.  相似文献   

18.
文章主要介绍了运用回归分析方法建立氢化锂车削表面粗糙度预测模型的方法。通过所建立的粗糙度预测模型,研究了车削过程中切削速度、进给量、切削深度对表面粗糙度的影响。经加工试验证明了该表面粗糙度预测模型的有效性,从而实现加工前在确定切削条件下预测和控制表面粗糙度的目的。  相似文献   

19.
目的 通过无心车床车削去除GH2132线材的表面缺陷,分析无心车床加工参数对线材表面粗糙度、尺寸误差和表面显微硬度的响应关系,并建立GH2132线材表面灰色关联度多目标优化模型,确定可行工艺参数域。方法 采用响应曲面中心复合设计,测量车削后GH2132线材的表面粗糙度、尺寸误差和表面显微硬度;利用响应曲面法(Response Surface Method,RSM)分别建立表面粗糙度、尺寸误差和表面显微硬度的单目标预测模型,确定单目标优化最优工艺参数组;基于灰色关联分析(Grey Correlation Analysis,GRA)理论,以表面粗糙度、尺寸误差和表面显微硬度为优化指标进行降维处理,构建车削工艺参数与灰色关联度的二阶回归预测模型;绘制车削工艺参数与灰色关联度值的等值线图,确定可行工艺参数域。结果 对建立的表面粗糙度、尺寸误差和表面显微硬度的单目标预测模型进行方差分析,显著度均小于0.000 1。得到了最小表面粗糙度工艺参数组,切削速度n=373.919 r/min,进给速度vf =0.475 m/min。得到了最小尺寸误差工艺参数组,n=375.636 r/min,vf =0.596 m/min。得到了最大表面显微硬度工艺参数组,n=337 r/min,vf = 0.903 m/min。对于灰色关联度多目标预测模型,误差范围为0.13%~9.4%,确定的可行工艺参数域对应的最小灰色关联度值为0.544 37。结论 基于灰色关联分析的多目标预测模型的准确度较高,主轴转速n对多目标的响应程度大于进给速度vf。通过确定可行工艺参数域,为GH2132线材去除表面缺陷提供工程参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号