首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase morphology and surface properties of some maleated ethylene propylene‐diene/organoclay nanocomposites (EPDM‐g‐MA/OC) were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements. The effect of organoclay and/or compatibilizing agent [maleic anhydride‐grafted polypropylene (PP‐g‐MA)] on the properties of the EPDM‐g‐MA nanocomposites was investigated. The quality and uniformity of nanoclay dispersion were analyzed by SEM and AFM images. The experimental results showed an intercalate structure and biphasic morphology for the binary blends based on EPDM and clay. The surface properties of the studied composites are significantly influenced by the presence of a compatibilizing agent—PP‐g‐MA. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
This research studied the composition and behavior of natural rubber (NR) and ethylene propylene diene monomer (EPDM) blends at various carbon black concentrations (0–30 phr) in terms of electrical resistivity, dielectric breakdown voltage testing, and physical properties. The blends having electrical properties suitable for application in high‐insulation iron crossarms were selected for investigation of compatibility and increased physical properties. The effect of the homogenizing agent concentration on improvement of compatibility of blends was studied by scanning electron microscopy, pulsed nuclear magnetic resonance spectroscopy, and rheology techniques. We also examined mechanical properties such as tensile strength, tear strength, elongation at break, and hardness. The NR/EPDM blends filled with a fixed concentration of silica were investigated for ozone resistance. A carbon black content as high as 10 phr is still suitable for the insulation coating material, which can withstand electrical voltage at 10 kVac. Addition of the homogenizing agent at 5 phr can improve the mechanical compatibility of blends, as evidenced by the positive deviation of shear viscosity of the rubber blend, that is, the calculated shear viscosity being higher than that of experimental data. Moreover, the pulsed NMR results indicated that the spin‐spin relaxation (T2) of all three components of the rubber blend was compressed upon the addition of the homogenizing agent. The ratio of NR/EPDM in the blend to best resist the ozone gas is 80/20 with the addition of silica of 30 phr into the blend. Also, the NR/EPDM filled with silica had a decreased change in thermal and mechanical properties of blends after thermal aging. The synergistic effect of silica content and high NR content (80) in 20 phr EPDM could improve antioxidation by ozone in the absence of a normal antioxidant for natural rubber. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3401–3416, 2004  相似文献   

3.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Polyamide 6 (PA6)/maleated ethylene–propylene–diene rubber (EPDM‐g‐MA)/organoclay (OMMT) composites were melt‐compounded through two blending sequences. Glycidyl methacrylate (GMA) was used as a compatibilizer for the ternary composites. The composite prepared through via the premixing of PA6 with OMMT and then further melt blending with EPDM‐g‐MA exhibited higher impact strength than the composite prepared through the simultaneous blending of all the components. However, satisfactorily balanced mechanical properties could be achieved by the addition of GMA through a one‐step blending sequence. The addition of GMA improved the compatibility between PA6 and EPDM‐g‐MA, and this was due to the reactions between PA6, EPDM‐g‐MA, and GMA, as proved by Fourier transform infrared analysis and solubility (Molau) testing. In addition, OMMT acted as a compatibilizer for PA6/EPDM‐g‐MA blends at low contents, but it weakened the interfacial interactions between PA6 and EPDM‐g‐MA at high contents. Both OMMT and GMA retarded the crystallization of PA6. The complex viscosity, storage modulus, and loss modulus of the composites were obviously affected by the addition of OMMT and GMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6 30/70) blends were impact modified by addition of three kinds of maleated polystyrene‐based copolymers, i.e., maleated styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), maleated methyl methacrylate‐butadiene‐styrene copolymer (MBS‐g‐MA), and maleated acrylonitrile‐butadiene‐styrene copolymer (ABS‐g‐MA). The mechanical properties, morphology and rheological behavior of the impact modified PPO/PA6 blends were investigated. The selective location of the maleated copolymers in one phase or at interface accounted for the different toughening effects of the maleated copolymer, which is closely related to their molecular structure and composition. SEBS‐g‐MA was uniformly dispersed in PPO phase and greatly toughened PPO/PA6 blends even at low temperature. MBS‐g‐MA particles were mainly dispersed in the PA6 phase and around the PPO phase, resulting in a significant enhancement of the notched Izod impact strength of PPO/PA6 blends from 45 J/m to 281 J/m at the MBS‐g‐MA content of 20 phr. In comparison, the ABS‐g‐MA was mainly dispersed in PA6 phase without much influencing the original mechanical properties of the PPO/PA6 blend. The different molecule structure and selective location of the maleated copolymers in the blends were reflected by the change of rheological behavior as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A series of thermoplastic elastomers (TPEs) were prepared from a binary blend of ethylene propylene diene rubber (EPDM) and isotactic polypropylene (iPP) using different types of phase modifiers. The influence of sulphonated EPDM, maleated EPDM, styrene‐ethylene‐co‐butylene‐styrene block copolymer, maleated PP, and acrylated PP as phase modifiers showed improved physico‐mechanical properties (like maximum stress, elongation at break, moduli, and tension set). Scanning electron and atomic force microscopy studies revealed better morphologies obtained with these phase modified EPDM‐iPP blends. The dependence of the phase modifier type and concentration was optimized with respect to the improvement in physical properties and morphology of the blends. Physical properties, dynamic mechanical properties, and morphology of these blends were explained with the help of interaction parameter, melt viscosity, and crystallinity of the blends. Theoretical modeling showed that Kerner, Ishai‐Cohen, and Paul models predicted the right morphology–property correlation for the prepared TPEs. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

7.
EPDM incorporated into blends of natural rubber/butadiene rubber (NR/BR) improves ozone resistance. In this work, the inferior mechanical properties of NR/BR/EPDM blends generally obtained by conventional straight mixing are overcome by utilizing a reactive processing technique. The entire amount of curatives, based on a commonly employed accelerator N‐cyclohexyl‐2‐benzothiazole sulfenamide (CBS) and sulfur, is first added into the EPDM phase. After a thermal pretreatment step tuned to the scorch time of the EPDM phase, the modified EPDM is mixed with premasticated NR/BR. The reactive blend vulcanizates show a significant improvement in tensile properties: tensile strength and elongation at break, as compared to those prepared by straight mixing, in both gum and carbon black‐filled blends. The increase of tensile properties in gum and filled reactive blend vulcanizates does suggest that the reactive processing technique leads to more homogeneous blends due to, either a better crosslink distribution, or more homogeneous filler distribution, or both. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:2538–2546, 2007  相似文献   

8.
The effects of incorporation of three different fillers, i.e., rice husk ash (RHA), silica, and calcium carbonate (CaCO3), over a loading range of 0–60 phr on the curing characteristics, processability, mechanical properties, and morphology of 75 : 25 natural rubber (NR)/ethylene‐propylene‐diene monomer (EPDM) blends were studied using a conventional vulcanization system. Filler loading and type influence the processability of the blends in which RHA and CaCO3 offer better processing advantage over silica. The best improvement in the tensile and tear strength and abrasion resistance of the 75 : 25 NR/EPDM blends with additional fillers was achieved when filled with silica. However, RHA and CaCO3 were better in resilience property compared to that of silica. The RHA filled blends showed higher failure properties and abrasion resistance but lower ozone resistance than that containing CaCO3. Scanning electron micrographs revealed that the morphology of the blend filled with silica is finer and more homogenous compared to the blend filled with RHA and CaCO3. According to these observations, RHA can be used as a cheaper filler to replace CaCO3 in rubber blends where improved mechanical properties are not so critical. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Polystyrene (PS)/polyamide 1212 (PA 1212) blends were compatibilized with a maleated triblock copolymer of styrene–(ethylene‐co‐butene)–styrene (SEBS‐g‐MA). Scanning electron microscopy revealed that the addition of SEBS‐g‐MA was beneficial to the dispersion of PA 1212 in the PS matrix because of the reaction between them. The variation of the fraction of SEBS‐g‐MA in the blends allowed the manipulation of the phase structure, which first formed a sheetlike structure and then formed a cocontinuous phase containing PA 1212/SEBS‐g‐MA core–shell morphologies. As a result, the mechanical properties, especially the Charpy notched impact resistance, were significantly improved with the addition of SEBS‐g‐MA. Differential scanning calorimetry (DSC) data indicated that the strong interaction between SEBS‐g‐MA and PA 1212 in the blends retarded the crystallization of PA 1212. The heat distortion temperature of the compatibilized blends was improved in comparison with that of the unmodified blend, probably because of the apparent increase in the glass‐transition temperature with an increasing concentration of SEBS‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1354–1360, 2005  相似文献   

10.
For many applications of conductive rubbers, it is desirable to endow the conductive rubber with high conductivity at low conductive filler loading. In this work, composites based on ethylene‐propylene‐diene monomer (EPDM) rubber and nitrile‐butadiene rubber (NBR) were prepared using carbon blacks, carbon fibers, and silver powders as fillers. As the weight fraction of silver powder increased, the hardness of composites increased gradually while the tensile strength and elongation at break decreased. SEM revealed that the EPDM/NBR blends exhibited a relatively co‐continuous morphology. The differential scanning calorimetry (DSC) curves reported the EPDM/NBR rubber blends were incompatibility. The thermogravimetry (TG) studies showed that adding a small amount of silver powder could improve the thermal stability of composites. These conductive composites exhibited good electrical property. At room temperature, when the total volume fraction of fillers was 15.20%, the volume resistivity of EPDM/NBR blend was only 0.0058 Ω cm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41357.  相似文献   

11.
Blends of polyamide 6 (PA6) and elastomeric ethylene‐octene copolymer (EOR), with and without maleated EOR (EOR‐MA) were studied. EOR‐MA with various amounts of grafted MA and gel content were prepared by reactive extrusion. The effects of EOR‐MA characteristics and composition on the morphology, thermal and mechanical properties of the blends were investigated. EOR‐MA was found to promote the toughness efficiency of PA6 remarkably. High impact resistance was achieved by the use of EOR‐MA containing less than 2% gel. The content of MA grafted on EOR‐MA in the range of 0.5%–1.0% gave a similar effect on the blend properties. The blend containing 20% of EOR grafted with 1% MA exhibited twenty times higher impact strength (1000 J/m) than pure PA6 (55 J/m). The presence of EOR‐MA in the blends led not only to a drastic reduction in the dispersed particle size, but also to some changes in fracture mechanisms, thus enhancing the impact resistance of the blends.  相似文献   

12.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MA) toughened polyamide 6 (PA6)/organoclay (OMMT) nanocomposites were prepared by melt blending. The role of OMMT in the morphology of the ternary composites and the relationship between the morphology and mechanical properties were investigated by varying the blending sequence. The PA6/EPDM‐g‐MA/OMMT (80/20/4) composites prepared by four different blending sequences presented distinct morphology and mechanical properties. The addition of OMMT could obviously decrease viscosity of the matrix and weaken the interfacial interactions between PA6 and EPDM‐g‐MA when blending EPDM‐g‐MA with a premixed PA6/OMMT nacocomposite, resulting in the increase of rubber particle size. The final mechanical properties are not only determined by the location of OMMT, but also by the interfacial adhesion between PA6 and EPDM‐g‐MA. Having maximum percentage of OMMT platelets in the PA6 matrix and keeping good interfacial adhesion between PA6 and EPDM‐g‐MA are beneficial to impact strength. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
Simple blending of natural rubber/ethylene–propylene–diene rubber (NR/EPDM) generally results in inferior mechanical properties because of curative migration and their differences for filler affinity. In this work, the 70/30 and 50/50 NR/EPDM blends prepared by reactive processing techniques were investigated and compared with the simple, nonreactive blends. The reactive blend compounds were prepared by preheating EPDM, containing all curatives to a predetermined time related to their scorch time prior to blending with NR. For the 70/30 gum blends, four types of accelerators were studied: 2,2‐mercaptobenzothiazole (MBT), 2,2‐dithiobis‐ (benzothiazole) (MBTS), N‐cyclohexyl‐2‐benzothiazolesulfenamide (CBS), and Ntert‐butyl‐2‐benzothiazolesulfenamide (TBBS). When compared with the simple blends, the reactive blends cured with CBS and MBTS showed a clearly improved tensile strength whereas the increase of tensile strength in the blends cured with TBBS and MBT was marginal. However, a dramatic improvement of ultimate tensile properties in the reactive 50/50 NR/EPDM blends cured with TBBS was observed when compared with the simple blend. For the N‐550‐filled blends at the blend ratios of 70/30 and 50/50, the reactive‐filled blends prepared under the optimized preheating times demonstrated superior tensile strength and elongation at break over the simple blends. The improved crosslink and/or filler distribution between the two rubber phases in the reactive blends accounts for such improvement in their mechanical properties. This is shown in the scanning electron micrographs of the tensile fractured surfaces of the reactive blends, which indicate a more homogeneous blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Dynamically vulcanized blends of polyoxymethylene (POM) and ethylene propylene diene terpolymer (EPDM) with and without compatibilizer were prepared by melt mixing in a twin screw extruder. Maleic anhydride (MAH) grafted EPDM (EPDM‐g‐MAH) has been used as a compatibilizer. Dicumyl peroxide was used for vulcanizing the elastomer phase in the blends. Mechanical, dynamical mechanical, thermal, and morphological properties of the blend systems have been investigated as a function of blend composition and compatibilizer content. The impact strength of both dynamically vulcanized blends and compatibilized/dynamically vulcanized blends increases with increase in elastomer content with decrease in tensile strength. Dynamic mechanical analysis shows decrease in tanδ values as the elastomer and compatibilizer content increased. Thermograms obtained from differential scanning calorimetric studies reveal that compatibilized blends have lower Tm values compared to dynamically vulcanized blends, which confirms strong interaction between the plastic and elastomer phase. Scanning electron microscopic observations on impact fractured surface indicate reduction in particle size of elastomer phase and its high level of dispersion in the POM matrix. In the case of compatibilized blends high degree of interaction between the component polymers has been observed. POLYM. ENG. SCI., 47:934–942, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
The melt processability and physico‐mechanical properties of blends of natural rubber (NR) and ethylene propylene diene rubber (EPDM) containing different dosages (0–10 phr) of phosphorylated cardanol prepolymer (PCP) were studied in unfilled and china‐clay‐filled mixes. The plasticizing effect of PCP in the blends was evidenced by progressive reduction in power consumption of the mixing and activation energy for melt flow with an increase in the dosage of PCP. The PCP‐modified blend vulcanizates showed higher tensile properties and tear strength despite a decrease in the chemical crosslink density (CLD) index. This is presumably due to the formation of a crosslinked network structure of PCP with the rubbers and improved dispersion of the filler particles in the rubber matrix, as evidenced by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Thermogravimetric analysis showed an increase in thermal stability of the blend vulcanizate in presence of 5 phr of PCP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5123–5130, 2006  相似文献   

17.
The effectiveness as impact modifier of two in situ maleated metallocene copolymers, a metallocene polyethylene, (mPE1) and a metallocene ethylene‐propylene (mEPDM) and three commercial maleated copolymers (mPE2‐g‐MA, EPDM‐g‐MA, and mEPR‐g‐MA) were studied in binary and ternary blends carried out in an intermeshing corotating twin‐screw extruder with polyamide‐6 (PA) as matrix (80 wt %). Also, the effects of the grafting degree, viscosity ratio, and crystallinity of the dispersed phases on the morphological and mechanical properties of the blends were investigated. A significant improvement of the compatibility of these grafted copolymers with PA6 was shown by FTIR spectroscopy, capillary rheometry, and scanning electron microscopy (SEM) in all reactive blends. The tensile strength values of the mEPR‐g‐MA/PA2 binary blend showed the highest strain hardening. The results obtained in this work indicated that the effectiveness of the grafted copolymers as impact modifier depends on the morphology of the blends and a combination of tensile properties of the blend components such as Young's modulus, Poisson ratio, and break stress. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A study of the dynamic complex and steady shear viscosity of isotactic polypropylene (iPP), ethylene–propylene diene terpolymer rubber (EPDM) and three different blends of both polymers are presented over a range of temperatures and frequencies. Moreover, the processability of these materials is studied through torque measurements during blend mixing. The results obtained show that the viscosity gradually increases with rubber content in the blend and decreases with both temperature and frequency. Plots of η″ versus η′ (Cole–Cole plots) show that the blend with the lower rubber content (25%), has a certain rheological compatibility with neat PP. Furthermore, torque curves measured during blend mixing confirm these results, demonstrating that the blend with 25% of elastomer has a similar behavior of iPP during processing. To analyze the morphological structure of the blends, a dynamic mechanical analysis of the solid state is also presented. It is observed that the blends have two distinct values of Tg close to the corresponding values of the pure polymers, confirming that this type of blends based on a semicrystalline polymer and an amorphous elastomer forms a two‐phase system with a limited degree of miscibility between both components. In addition, the polymer present with the higher concentration forms the continuous phase and controls the rheological properties of the blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1–10, 2001  相似文献   

19.
Polyamide 6,6 (PA6,6)/maleated styrene–hydrogenated butadiene–styrene (SEBS) blends filled with up to 20% spherical glass beads (GBs) were prepared by extrusion and subsequent injection molding. Tensile and impact tests were used to examine the effect of GB additions on the mechanical behavior of PA6,6/SEBS–g–MA 80/20 blend. Tensile measurements showed that the GB additions improve the stiffness of the PA6,6/SEBS–g–MA 80/20 blend but had little effect on its tensile ductility. The impact test revealed that the impact strength of PA6,6/SEBS–g–MA 80/20 blend tends to decrease with increasing GB content. Therefore, the GB additions were beneficial to maintain a stiffness-to-toughness balance of the PA6,6/SEBS–g–MA 80/20 blend. Finally, the correlation between the experimental tensile stiffness and strength with various theoretical models is discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3231–3237, 2001  相似文献   

20.
This work is aim to study the encapsulated morphology development in ternary blends of polyamide 6/high density polyethylene/maleic anhydride‐grafted‐ethylene propylene diene monomer (PA6/HDPE/EPDM‐g‐MA) and polyamide 6/maleic anhydride‐grafted‐high density polyethylene/ethylene propylene diene monomer (PA6/HDPE‐g‐MA/EPDM) through thermodynamically control described by Harkins spreading theory. The phase morphology was confirmed by using scanning electron microscope (SEM) and selective solvent extraction revealed that PA6/HDPE/EPDM‐g‐MA blend having a composition of 70/15/15 vol % is constituted of polyamide 6 matrix with dispersed composite droplets of HDPE subinclusions encapsulated by EPDM‐g‐MA phase, while for PA6/HDPE‐g‐MA/EPDM blend with the same composition is constituted of polyamide 6 matrix with dispersed composite droplets of HDPE‐g‐MA subinclusions encapsulated by EPDM phase. Quiescent annealing test revealed that for PA6/HDPE/EPDM‐g‐MA blend, a perfect core–shell structure with one HDPE particle encapsulated by EPDM‐g‐MA phase was formed during annealing, and for PA6/HDPE‐g‐MA/EPDM blend, a novel complete inverting HDPE‐g‐MA/EPDM core/shell structure was achieved. Moreover, quantitative analysis about coalescent behaviors of HDPE‐g‐MA and HDPE subinclusions during quiescent annealing were investigated by image analysis and the result suggested that the grafted maleic anhydride group in HDPE‐g‐MA, acted as a role of steric repulsion, could suppress coalescence effects, thus leaded to a lower coalescent rate than that of HDPE subinclusions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39937.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号