首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Monofilaments of in situ composites were prepared from an immiscible blend of a thermotropic liquid‐crystalline polymer (TLCP), Rodrun LC3000, and a thermoplastic elastomer, styrene–(ethylene butylene)–styrene (SEBS), by a melt spinning process. Mechanical properties and the morphology of the composite monofilaments were investigated and compared with those of the extruded strands previously reported. The stresses at all tensile strains of the composite monofilaments were much higher than those of the extruded strands. The tensile strengths of both extruded strands and monofilaments were comparable, but the elongation at break of monofilaments dropped considerably. The tension sets of composite monofilaments were slightly higher than those of extruded strands. All composite monofilaments with TLCP content of ≤15 wt % exhibited good elastic recovery under the applied strain up to 200%. The dynamic mechanical storage modulus at 25°C of 10 wt % TLCP composite monofilament increased fourfold compared with that of the composite extruded strand and fivefold compared with that of the neat SEBS monofilament. The dramatic enhancement in the mechanical properties of in situ composite monofilaments is due to the formation of finer and longer TLCP fibrils (length‐to‐width ratio > 100) than those formed in the extruded strands. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 518–524, 2003  相似文献   

2.
A thermotropic liquid‐crystalline polymer (TLCP), a copolyester with a 60/40 molar ratio of p‐hydroxy benzoic acid and poly(ethylene terephthalate), was blended with a styrene/ethylene butylene/styrene thermoplastic elastomer with a twin‐screw extruder. The rheological behavior, morphology, and mechanical properties of the extruded strands of the blends were investigated. The rheological measurements were performed on a capillary rheometer in the shear rate range of 5–2000 s?1 and on a plate‐and‐plate rheometer in the frequency range of 0.6–200 rad s?1. All the neat components and blends exhibited shear thinning behavior. Both the shear and complex viscosities of all the blends decreased with increasing TLCP contents, but the decrease in the shear viscosity was more pronounced. The best fibrillar morphology was observed in the extruded strands of a blend containing 30 wt % TLCP, and a lamellar structure started to form at 40 wt % TLCP. With an increasing concentration of TLCP, the tensile modulus of the blends was greatly enhanced, whereas the tensile strength was almost unchanged. The elongation at break of the blends first slightly decreased with the addition of TLCP and then sharply dropped at 40 wt % TLCP. The tension set measured at 200% deformation slightly increased with increasing TLCP contents up to 30 wt %, over which the set value was unacceptable for a thermoplastic elastomer. A remarkable improvement in the dynamic mechanical properties of the extruded strands was observed in the blends with increasing amounts of TLCP. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2676–2685, 2003  相似文献   

3.
The influence of drawing on the limiting draw ratio upon formation of the morphological structure of fibers spun from binary polypropylene (PP) blends was studied. Fibers were spun from a fiber‐grade CR‐polymer and from the blends of a fiber‐grade CR‐polymer with a molding‐grade polymer in the composition range of 10–50 wt % added. As‐spun fibers were immediately moderately and additionally highly drawn at the temperature of 145°C. The structure and morphology of these fibers were investigated by small‐angle X‐ray scattering, wide‐angle X‐ray scattering, differential scanning calorimetry, scanning electron microscopy, density, birefringence, and sound velocity measurements. It was shown that continuously moderately drawn fibers are suitable precursors for the production of high tenacity PP fibers of very high modulus, because of so called oriented “smectic” structure present in these fibers. With drawing at elevated temperature, the initial metastable structure of low crystallinity was disrupted and a c‐axis orientation of monoclinic crystalline modification was developed. Hot drawing increased the size of crystallites and crystallinity degree, the orientation of crystalline domains, and average orientation of the macromolecular chains and resulted in extensive fibrillation and void formation. It was found that the blend composition has some influence on the structure of discontinuously highly drawn fibers. With increasing the content of the molding‐grade polymer in the blend, the size of crystalline and amorphous domains, density and crystallinity, as well as amorphous orientation decreased. Relationship has been established between the mechanical properties, crystallinity, and orientation of PP fibers. It was confirmed that by blending the fiber‐grade CR‐polymer by a small percentage of the molding‐grade polymer, maximization of elastic modulus is achieved, mainly because of higher orientation of amorphous domains. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1067–1082, 2006  相似文献   

4.
This paper is concerned with properties and processing performance of two thermotropic liquid crystalline polymers (TLCPs) produced by DuPont (HX6000 and HX8000) with widely varying melting points and blends of these two TLCPs. This work was carried out in an effort to develop a TLCP suitable for generating poly(ethylene terephthalate) (PET) composites in which the melting point of the TLCP was higher than the processing temperature of PET. Strands of the neat TLCPs and a 50/50 wt % TLCP–TLCP blend were spun and tested for their tensile properties. It was determined that the moduli of the HX8000, HX6000, and HX6000–HX8000 blend strands were 47.1, 70, and 38.5 GPa, respectfully. Monofilaments of PET–HX6000–HX8000 (50/25/25 wt %) were spun with the use of a novel dual extruder process. The strands had moduli as high as 28 GPa, exceeding predictions made using the rule of mixtures and tensile strengths around 275 MPa. The strands were then uniaxially compression molded at 270°C. It was found that after compression molding, the modulus dropped from 28 GPa to roughly 12 GPa due to the loss of molecular orientation in the TLCP phase. However, this represents an improvement over the use of HX8000. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2209–2218, 1999  相似文献   

5.
A thermotropic liquid crystalline copolyester (TLCP) was blended with low density polyethylene using a corotating twin screw extruder and then fabricated by extrusion through a miniextruder as cast film. Rheological behavior, morphology, and tensile properties of the blends were investigated. Melt viscosities of neat components and blends measured by using plate‐and‐plate and capillary rheometers at 240°C, in the shear rate range 1–104 s?1, showed similar shear thinning effect. The viscosity values measured by the two techniques in the overlapping range of shear rate are found to be identical, which is in accord with the Cox–Merz rule. Addition of TLCP slightly reduces the matrix melt viscosity. TLCP dispersed phase in the extruded strand appeared in the form of spherical droplets. These droplets were elongated into fibrils with high aspect ratio (length to width) at the film extrusion step. As a result, the Young's modulus in machine direction (MD) of the composite film was greatly enhanced. At 20 wt % of TLCP, the MD Young's modulus was found to be about 16‐fold increase compared to that of the neat polyethylene film. However, the elongation at break sharply dropped with the increase of TLCP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 561–567, 2002; DOI 10.1002/app.10307  相似文献   

6.
Rubber‐toughened polypropylene (PP)/org‐Montmorillonite (org‐MMT) nanocomposite with polyethylene octene (POE) copolymer were compounded in a twin‐screw extruder at 230°C and injection‐molded. The POE used had 25 wt % 1‐octene content and the weight fraction of POE in the blend was varied in the range of 0–20 wt %. X‐ray diffraction analysis (XRD) revealed that an intercalation org‐MMT silicate layer structure was formed in rubber‐toughened polypropylene nanocomposites (RTPPNC). Izod impact measurements indicated that the addition of POE led to a significant improvement in the impact strength of the RTPPNC, from 6.2 kJ/m2 in untoughened PP nanocomposites to 17.8 kJ/m2 in RTPPNC containing 20 wt % POE. This shows that the POE elastomer was very effective in converting brittle PP nanocomposites into tough nanocomposites. However, the Young's modulus, tensile strength, flexural modulus, and flexural strength of the blends decreased with respect to the PP nanocomposites, as the weight fraction of POE was increased to 20 wt %. Scanning electron microscopy (SEM) was used for the investigation of the phase morphology and rubber particles size. SEM study revealed a two‐phase morphology where POE, as droplets was dispersed finely and uniformly in the PP matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3441–3450, 2006  相似文献   

7.
In situ reinforcing elastomer composites based on Santoprene thermoplastic elastomer, a polymerized polyolefin compound of ethylene–propylene–diene monomer/polypropylene, and a thermotropic liquid crystalline polymer (TLCP), Rodrun LC3000, were prepared using a single‐screw extruder. The rheological behavior, morphology, mechanical, and thermal properties of the blends containing various LC3000 contents were investigated. All neat components and their blends exhibited shear thinning behavior. With increasing TLCP content, processability became easier because of the decrease in melt viscosity of the blends. Despite the viscosity ratio of dispersed phase to the matrix phase for the blend system is lower than 0.14, most of TLCP domains in the blends containing 5–10 wt % LC3000 appeared as droplets. At 20 wt % LC3000 or more, the domain size of TLCP became larger because of the coalescence of liquid TLCP threads that occurred during extrusion. The addition of LC3000 into the elastomer matrix enhanced the initial tensile modulus considerably whereas the extensibility of the blends remarkably decreased with addition of high TLCP level (>.20 wt %). The incorporation of LC3000 into Santoprene slightly improved the thermal resistance both in nitrogen and in air. Dynamic mechanical analysis results clearly showed an enhancement in dynamic moduli for the blends with 20–30 wt % LC3000. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
以热致性液晶共聚酯——聚对苯二甲酸乙二酯/对羟基苯甲酸(PET/PHB)作为添加剂与PET共混纺丝,研究该PET/TLCP(热致性液晶高聚物)共混物的可纺性,并用DSC、X光衍射、声速和应力-应变等方法对纤维的热性能、结晶和取向结构以及力学性能进行了表征。结果表明,TLCP质量含量为5%左右的PET共混物可纺性良好。TLCP对PET从熔体结晶具有阻止作用,共混初生纤维的玻璃化转变和冷结晶温度均因TLCP的存在而升高。TLCP质量含量为5%的共混物纤维结晶结构与纯PET纤维相似,但晶粒尺寸较小,且晶粒尺寸大小与共混物组成、喷丝头拉伸比和后拉伸比有关。TLCP含量增加,共混纤维取向度和模量增大,而强度下降,但后拉伸可使纤维强度有较大的提高。  相似文献   

9.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

10.
Binary blends of metallocene polyethylenes with polyethylenes and polypropylene were made in a co‐rotating twin‐screw extruder. A stretching process was carried out afterwards in the melt state at the extruder's exit to study the effect of the induced orientation on their thermal and tensile properties. Capillary rheometry was performed to the neat polymers to determine the viscosity ratios of the blend components as a function of the shear rate. SEM and Micro‐Raman analyses were done to study the morphology of the stretched and nonstretched blends. As expected, an increase in the modulus and tensile stress was obtained through blending. Additionally, the elastomeric behavior of the metallocene polyethylene (mPE) sample is observed in all blends and it was not lost through blending. Nevertheless, all blends without stretching exhibited a negative deviation of the linear additivity rule of blending. The stretching of the blends made with metallocene polyethylenes as matrices and other types of PEs as dispersed phase did not improve the tensile properties, although some differences in the dispersed phases were found by DSC, and microfibrils could be seen in the drawn mPE/HDPE blend. However, blending with PP produced an improvement in the modulus and tensile stress of the drawn samples in comparison to their undrawn counterpart. The tensile stresses of PP blends are more sensitive to the drawing process than the modulus, which can be attributed to the appearance of large fibril fractions during this process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The article deals with method of preparation, rheological properties, phase structure, and morphology of binary blend of poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) and ternary blends of polypropylene (PP)/(PET/PBT). The ternary blend of PET/PBT (PES) containing 30 wt % of PP is used as a final polymer additive (FPA) for blending with PP and subsequent spinning. In addition commercial montane (polyester) wax Licowax E (LiE) was used as a compatibilizer for spinning process enhancement. The PP/PES blend fibers containing 8 wt % of polyester as dispersed phase were prepared in a two‐step procedure: preparation of FPA using laboratory twin‐screw extruder and spinning of the PP/PES blend fibers after blending PP and FPA, using a laboratory spinning equipment. DSC analysis was used for investigation of the phase structure of the PES components and selected blends. Finally, the mechanical properties of the blend fibers were analyzed. It has been found that viscosity of the PET/PBT blends is strongly influenced by the presence of the major component. In addition, the major component suppresses crystallinity of the minor component phase up to a concentration of 30 wt %. PBT as major component in dispersed PES phase increases viscosity of the PET/PBT blend melts and increases the tensile strength of the PP/PES blend fibers. The impact of the compatibilizer on the uniformity of phase dispersion of PP/PES blend fibers was demonstrated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4222–4227, 2006  相似文献   

12.
This work is concerned with preliminary studies on developing thermoplastic composites for use in fused deposition modeling (FDM). Polypropylene (PP) strands reinforced with thermotropic liquid crystalline polymer (TLCP) fibrils were generated in a novel dual extruder process. The process allowed the reinforcement of PP with a melting point (Tm) of 165°C with continuous fibrils of a high melting (283°C) TLCP (Vectra A950). The strands were then re-extruded in a capillary rheometer forming monofilaments to simulate piston actuated FDM. The effects of the thermal and deformation histories on the mechanical properties of the re-extruded strands were evaluated. It was found that tensile properties of the strands improved with draw ratio and that the maximum modulus of the composite strands was similar to that predicted by composite theory. Strands were consolidated uniaxially via compression molding at temperatures just above the melting point of the matrix to determine the effect of thermal history. This resulted in a ∼20% reduction in tensile modulus relative to the modulus of the strands. Monofilaments were extruded from a capillary rheometer in which long fiber strands were used as feedstock to study the effects of deformation history on the tensile properties. It was found that the tensile properties of the monofilaments were dependent on capillary diameter, capillary L/D, and apparent shear rate due to fibril alignment.  相似文献   

13.
N‐vinyl pyrrolidone (NVP) was grafted onto a polypropylene copolymer (PP) in melt in a Brabender Plasticorder and single screw extruder. The effect of variation of dicumyl peroxide (DCP) and lupersol (LUP) concentrations alone and with 20 wt % NVP concentration in the Brabender Plasticorder on Melt Flow Index (MFI) and final torque values was studied. Variation of NVP concentration (1–10 wt %) at a fixed DCP concentration on percent grafting (G) and MFI was also studied in the single screw extruder. The graft copolymers (PP‐g‐NVP) obtained by reaction of PP with NVP were soxhlet extracted with isopropanol to remove homopolymer, dried, and finally characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PP‐g‐NVP (0–30 wt %) was used as an additive with PP, extruded in the single screw extruder, molded, and the mechanical properties and paint adhesion was measured. MFI values increased and torque values decreased with an increase in initiator concentration, indicating the dominance of the peroxide‐initiated scission reaction over grafting. DCP gave higher grafting compared to LUP. When NVP concentration was increased, MFI values increased initially due to more scission, and then decreased, indicating more graft copolymer formation. Mechanical properties increased by incorporation of PP‐g‐NVP as an additive than PP‐g‐NVP alone. Paint adhesion increased by the presence of PP‐g‐NVP as additive especially with polyurethane primer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2173–2180, 2003  相似文献   

14.
Itaconic acid (IA) was grafted onto polypropylene/low‐density polyethylene (PP/LDPE) blends. The ratio of polymeric components was varied from 100 : 0 to 0 : 100. The effect of the variation in the ratios of the components on grafting efficiency and concomitant side processes was studied. Grafting of IA (1 wt %) was initiated by 2,5‐dimethyl‐2,5‐di(tert‐butyl peroxy)‐hexane (0.3 wt %) and was carried out in an extruder reactor equipped with a dynamic mixer. An increase in the PP content of the blend led to a lower yield of the grafted product. With low concentrations of LDPE in the blend (up to 25 wt %), grafting efficiency was observed to increase, and this increase was greater in comparison with the additive rule. Between 25 and 99 wt % of LDPE in the blend, grafting efficiency rose monotonically with LDPE concentration. At or below an LDPE content of 25 wt %, the melt flow index (MFI) of [PP/LDPE]‐g‐IA would increase unlike with PP‐g‐IA systems. But a small quantity of PP (below 25 wt %) in the [PP/LDPE]‐g‐IA blends would result in a decreased MFI unlike with LDPE‐g‐IA. The dependence of swell index and melt strength on the ratio of polymeric components in [PP/LDPE]‐g‐IA blends also was investigated. ©2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5095–5104, 2006  相似文献   

15.
Blends of a long‐chain branched polypropylene (LCB‐PP) and a linear polypropylene (L‐PP) were prepared using a twin‐screw extruder. Linear viscoelastic properties such as complex viscosity, storage modulus, and weighted relaxation spectrum were determined as functions of LCB‐PP content. Shear data obtained from commercial rheometers as well as from a slit‐die rheometer were used to verify the Cox‐Merz relation for the neat components as well as for a blend. Elongational properties were obtained using a Sentmanat Extensional Rheometer (SER) unit mounted on an Advanced Rheometric Expansion System (ARES) rheometer and the converging die. A significant strain hardening was observed for the neat LCB‐PP as well as for all the blends, but the strain hardening decreased with increasing strain rate. The apparent steady elongational viscosity values evaluated using the converging die were observed to be comparable at high deformation rates to those obtained from the SER unit, but the differences increased as the strain rate decreased. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

16.
Blends of a polypropylene (PP) and a metallocene catalysed ethylene-octene copolymer (EOC) were prepared using a single screw extruder fitted with a barrier screw design. The EOC used had 25 wt% 1-octene content and the weight fraction of EOC in the blends covered the range 1-30 wt.% Viscosity values for the blends determined experimentally from dual capillary rheological studies were similar to those calculated theoretically using the log additivity principle described by Ferry. This result together with scanning electron microscopy (SEM) observations and evidence from tan δ curves from dynamic mechanical thermal analysis showed PP and EOC to be partially miscible for blends having 10 wt% EOC or less. The tensile modulus, break strength and flexural modulus of the blends decreased with respect to virgin PP as the weight fraction of EOC was increased to 30 wt.% The diminution in mechanical properties was concomitant with an initial increase in elongation at break from 40% for neat PP to 140% for the blend with 15 wt% EOC before decreasing to 65% when 30 wt% EOC was blended. The optimum impact modification of the PP used in this study, in the temperature range −40 to 23 °C, was achieved by blending with between 20 and 30 wt% EOC.  相似文献   

17.
In situ‐reinforcing composites based on two elastomer matrices very different in melt viscosity, styrene–(ethylene butylene)–styrene triblock copolymer (Kraton G1650), and styrene–(ethylene propylene) diblock copolymer (Kraton G1701), and a thermotropic liquid crystalline polymer (TLCP), Rodrun LC3000, were prepared using a twin‐screw extruder. The isothermal decomposition behavior and dynamic mechanical properties of the extruded strands were investigated by means of thermogravimetry (TG) and dynamic mechanical analysis (DMA), respectively. No significant change in the shape of TG curves for the neat matrices and their LC3000‐containing blends was observed under isothermal heating in nitrogen. In air, G1650 and G1701 showed a single weight‐loss stage and rapid decomposition whereas their blends with 30 wt % LC3000 showed different profiles of weight loss depending on isothermal temperatures. The calculated kinetic parameters indicated that the thermal stability of the polymers is much higher in nitrogen than in air and suggested an enhancement of thermal resistance of the elastomer matrices by addition of TLCP. DMA results showed a great enhancement in dynamic moduli for the blend with 10 wt % LC3000 when compared with the neat matrix. The tan δ peaks corresponding to the elastic and hard phases in both matrices mostly shifted to the lower temperature with LC3000 loading. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 917–927, 2007  相似文献   

18.
Blends of poly(phenylene sulfide) (PPS) and recycled poly(ether ether ketone) (r‐PEEK) were prepared using a twin‐screw extruder. The carbon nanotube (CNT) added to the blends not only improved the compatibility of the two polymers, but also affected the morphology of the immiscible PPS/r‐PEEK blends. R‐PEEK always forms the dispersed phase and PPS the continuous phase in such blends. In the composite, CNT particles were observed in the PPS phase, mostly distributes in the interface between PPS and PEEK. The results show that r‐PEEK improves the impact and tensile strength of PPS, but does not provide nucleation effect on PPS. However, CNT improved the flexural modulus of PPS/r‐PEEK blends and promoted the crystallization of r‐PEEK rather than that of PPS. The prepared PPS/r‐PEEK blends provided larger electrical conductivity than neat polymers. Adding 20 wt % CNT to blend resulted in composite with the minimum volume resistivity, a reduction of four orders of magnitude, compared with that of the neat blend. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42497.  相似文献   

19.
A thermotropic liquid crystalline copolymer (TLCP) having a trimethylene terephthalate (TT) unit and a triad terephthaloyl mesogenic unit was synthesized and its blends with poly(trimethylene terephthalate) (PTT) were prepared for TLCP‐reinforced fiber spinning. The TLCP, PTT, and their blends were characterized in terms of their thermal, mechanical, and morphological properties. In the hot‐drawn fibers of 20 wt % TLCP/PTT blend, the well‐oriented fibrils were observed at higher temperature (>Tm) than the PTT melt by polarizing optical microscope. With scanning electron microscopy images of cryogenically fractured surfaces of the blends, the TLCP were well dispersed in 0.3 to 0.5 µm in domain size. Interfacial adhesion between the TLCP and PTT seemed fairly good. The TLCP acted effectively as a reinforcing material in PTT matrix, it led to an increase of initial modulus and tensile strength of the blend fibers as TLCP's content increased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41408.  相似文献   

20.
Polypropylene/ethylene vinyl acetate (PP/EVA) blends were prepared in a plastic extruder with a static mixer. The thermodynamic compatibility, morphology, crystal form, and rheological behavior of PP/EVA blends were investigated by SEM, DSC, and rheology instruments. The results showed that PP and EVA were thermodynamically incompatible, the viscosity of the PP/EVA blends decreased with increase of shear rate in a range of temperature, the PP/EVA blends had a sea‐islands structure, and the crystalline zones remained in their original state and could not form mixed crystals in the PP/EVA blends. The PP/EVA blends were melt spun to prepare matrix fibers and the spinning conditions such as EVA content, the matching factor between pump delivery and winding velocity, and the melt‐spinning temperature were also determined. The sorption process of a matrix fiber for essential oils, adsorbed under various sorption conditions such as sorption time, sorption temperature, and EVA content, was also studied. The results revealed that the composite isotherm of the adsorption of matrix fiber for essential oil was characteristic of a U model. Through adsorbing essential oil, the immersion‐type PP fragrant fibers could be prepared with the matrix fiber. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1970–1979, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号