首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogel of carboxymethyl sago pulp (CMSP) of various degree of substitution (DS) was prepared by electron beam irradiation of various radiation doses. The CMSP hydrogels were subjected to swelling in different ionic strength solutions of KCl, NaCl, and CaCl2. The CMSP hydrogels, due to its polyelectrolyte nature, were found to be highly sensitive to ionic strength of the medium. All the CMSP hydrogels showed the absorption of K+ and Ca2+ increases with the increase in the concentrations of the respective cation solutions. The cation absorption also decreases with DS and % gel fraction (%GF) of the CMSP hydrogels. Subjecting the CMSP hydrogels in NaCl results in deswelling and releases Na+ to swelling medium where the Na+ release increases with the increase of DS and %GF. The sorption capacity depends on the extent of crosslinking and decreases with the increase in the extent of crosslinking. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Solutions of carboxymethyl sago pulp (CMSP) of various degree of substitution were irradiated with electron beam of various radiation doses. The gelation dose (Dg) and po/qo ratio (po is degradation density, qo is crosslinking density) is dependent on CMSP concentration and degree of substitution. In the range of concentrations of 10% to 80% (w/v) CMSP with degree of substitutions of 0.4, 0.6, and 0.8, the po/qo ratio decreases with increasing %CMSP showing that crosslinking processes are dominating and increasing the gel network of the CMSP hydrogel. The fourier transform infrared spectra of CMSP hydrogels of degree of substitutions of 0.4, 0.6, and 0.8 with percentage of gel fractions 25, 35, and ≥ 40 show differences in the intensity of the absorption bands at 1020–1100, 1326, and 1422 cm?1 with different degree of substitutions and percentage of gel fraction (%GF) that correspond to different extents of chain scission and crosslinking. The swelling behavior in water shows that CMSP hydrogels could absorb 3500–5300% of water by 1 g of CMSP hydrogel. The ability to absorb water increases with the decrease of degree of substitution and %GF of the CMSP hydrogels. It is also observed that the optimum pH for swelling CMSP hydrogel is at pH 7. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

3.
In these studies, hydrogels for wound dressings were made from a mixture of aloe vera and poly(vinyl alcohol) (PVA)/poly(N‐vinylpyrrolidone) (PVP) by freezing and thawing, γ‐Ray irradiation, or a two‐step process of freezing and thawing and γ‐ray irradiation. We examined the physical properties, including gelation, water absorptivity, gel strength, and degree of water evaporation, to evaluate the applicability of these hydrogels for wound dressings. The PVA:PVP ratio was 6:4, the dry weight of aloe vera was in the range 0.4–1.2 wt %, and the solid concentration of the PVA/PVP/aloe vera solution was 15 wt %. We used γ radiation doses of 25, 35, and 50 kGy to expose mixtures of PVA/PVP/aloe vera to evaluate the effect of radiation dose on the physical properties of the hydrogels. Gel content and gel strength increased as the concentration of aloe vera in the PVA/PVP/aloe vera gels decreased and as radiation dose increased and the number of freeze–thaw cycles was increased. The swelling degree was inversely proportional to the gel content and gel strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1477–1485, 2003  相似文献   

4.
Polyampholytic hydrogels, with varying degrees of crosslinking and ionic content, were prepared by radiation polymerization of p‐sodium styrene sulfonate (SSS) and vinyl benzyl trimethylammoniumchloride (VBT). These gels were investigated for their dynamic and equilibrium swelling kinetics. Dynamic swelling of these gels established that the gels containing equal amounts of SSS and VBT strictly follow Fickian diffusion. The hydrogels containing excess of SSS followed the case II type of diffusion, whereas those containing excess of VBT followed anomalous diffusion. Equilibrium swelling kinetics of these gels in aqueous system, ethanol–water mixture, at different pHs, and in the presence of solutions of biological interest was studied. It was seen that gels containing equal amounts of SSS and VBT show the lowest equilibrium swelling. Swelling of the polyampholytic gel decreased with an increase in the radiation dose imparted and the amount of crosslinking agent incorporated in the gel. The gels having an excess of VBT showed higher equilibrium swelling in comparison to those having an excess of SSS. Differential scanning calorimetry (DSC) studies showed that crosslinking of the gels decreases equilibrium swelling but increases the bonded nonfreezable water content of the gels. The organic solvents like ethanol cause abrupt collapse of the polyampholyte gels containing excess of SSS and those containing equal amounts of both the monomers at some critical ratio of water and ethanol in swelling medium. However, the deswelling in the water–ethanol mixture was gradual for gels containing an excess of VBT and the extent of deswelling was also low for these gels in comparison to other gels. The swelled gels of all compositions deswelled when they were transferred to solutions at pH in the range 2–12. Biologically important solutes like urea, glucose, and surfactants like Triton‐X tend to further swell the polymer matrices, whereas NaCl causes their deswelling. The additive effect is more prominent for polyampholyte gels containing excess of either of the monomers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 730–742, 2003  相似文献   

5.
Cellulose gels were prepared through the crosslinking of hydroxypropyl methylcellulose phthalate (HPMCP) with electron‐beam irradiation in concentrated organic solvent solutions. The effects of the solvent species, polymer concentration, and irradiation dose on the formation of the gels were investigated. Some organic solvents, such as alcohols with short alkyl chains, alkyl acetates, and ketones, were found to be suitable as media for the radiation crosslinking of the polymer. The prepared HPMCP gels showed excellent swelling in various organic solvents with medium hydrogen‐bonding abilities, such as pyridine, cresol (meta), acetic acid, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, 1,4‐dioxane, acetone, methyl ethyl ketone, methyl acetate, and chloroform. In an acetone/water mixture, the swelling ratio was significantly dependent on the solvent composition because of the coexistence of both hydrophilic and hydrophobic moieties in HPMCP. These results suggest that HPMCP gels have the potential to be superabsorbents for various kinds of organic solvents. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3002–3007, 2004  相似文献   

6.
A series of N‐isopropylacrylamide/[[3‐(methacryloylamino)propyl]dimethy(3‐sulfopropyl)ammonium hydroxide] (NIPAAm/MPSA) copolymer hydrogels were prepared with various compositions. Swelling of the hydrogels in water, aqueous NaCl, KCl, CaCl2, and MgCl2 solutions was studied. NIPAAm/MPSA hydrogels have a higher degree of swelling in water and salt solutions than that of poly(N‐isopropylacrylamide) (PNIPAAm). Also, NIPAAm/MPSA hydrogels are more salt resistant when deswelling in salt solutions. For <7 mol % MPSA, the formed hydrogels retain both temperature reversibility and high swelling. A higher content of MPSA (>11 mol %) leads to better salt resistance but a decrease in thermosensitivity. The swelling of NIPAAm/MPSA hydrogel in 0.05M NaCl is non‐Fickian. In NaCl and KCl aqueous solutions, the zwitterionic hydrogels do not show obvious antipolyelectrolyte swelling behavior, whereas in divalent salt CaCl2 and MgCl2 solutions, the swelling ability of NIPAAm/MPSA hydrogels is enhanced at low salt concentration, then decreases with further increase in salt concentration. The lower critical solution temperatures of NIPAAm/MPSA hydrogels are also affected by concentrated salt solution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2032–2037, 2003  相似文献   

7.
A facile method was explored to synthesize thermosensitive poly[N‐isopropylacrylamide (NIPAM)‐co‐methacryloxyethyltrimethyl ammonium chloride (DMC)]/Na2WO4 cationic hydrogels via copolymerization of NIPAM and DMC in the presence of Na2WO4. Na2WO4 acted as both a physical crosslinking agent and a porogen precursor. The hydrogels were characterized by Fourier transform infrared spectroscopy, energy dispersive X‐ray, thermogravimetry, environmental scanning electron microscopy, and transmission electron microscopy. Effects of various salt solutions, pH solutions on swelling were investigated. Thermosensitivity of the hydrogels were also investigated in various polar solvents at different temperatures. The resultant hydrogel showed a fast swelling rate and good salt tolerance. The hydrogels reached the swelling equilibrium within 10 min. Moreover, the swelling ratio of the hydrogels increased with the increase of the polarity of the solvent. In the water, the swelling ratio decreased with the increasing of temperature, but remained at a high level even at 80 °C since the pore structure weaken the lower critical solution temperature effect of PNIPAM. The swelling ratio increased instead in low polar solvent, while it became negligible in nonpolar solvent with the increasing of temperature. The whole swelling kinetics was fit for Schott's pseudo‐second order model. The hydrogels have a great potential as catalysts and smart materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46375.  相似文献   

8.
pH‐sensitive poly(N,N‐dimethylaminoethyl methacrylate) hydrogels were synthesized by free‐radical crosslinking polymerization using two different crosslinking agents; tetraethylene glycol dimethacrylate (TEGMA) and N,N′‐methylenebis(acrylamide) (BAAm). The influence of the polymerization factors such as the type of the crosslinking agent and the gel preparation concentration on the swelling behavior, the gel strength, the effective crosslinking density and the average chain length between the crosslink points for the resulting hydrogels was investigated. The results of the equilibrium swelling measurements in water showed that the linear swelling ratio of the resulting hydrogels increases with increasing gel preparation concentration. The swelling ratio of PDMAEMA hydrogels crosslinked with BAAm is larger than those for hydrogels crosslinked with TEGMA over the entire range of the polymer network concentration. The hydrogels exhibit very sharp pH‐sensitive phase transition in a very narrow range of pH between 7.7 and 8.0. From the mechanical measurements, it was also found that the linear swelling ratio of resulting hydrogels depends on the crosslinking density and also the type of the crosslinker used in the preparation. The resulting hydrogels are thought to be good candidates for pH‐sensitive drug delivery systems. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

9.
Poly(N‐(hydroxymethyl)methacrylamide‐1‐allyl‐2‐thiourea), (poly(NHMMA‐ATU)) hydrogels were synthesized by γ radiation, using 60Co γ source at different radiation doses, to change the porosity and crosslinking density of the hydrogels. The percent of 1‐allyl‐2‐thiourea (ATU) in the monomer mixture before the irradiation was varied between 2.5% and 10.0%, to increase the content of ATU, which was involved in some different applications in the hydrogels. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis, and the swelling experiments were used to characterize the poly(NHMMA‐ATU) hydrogels synthesized in this study. Characterization results of hydrogels showed that crosslinking density of the hydrogels was increased by the increasing radiation dose and ATU content in the irradiated mixture. Swellability of these hydrogels was found to be high enough to allow the metal ions and biomolecules getting inside the hydrogels to interact with all active groups on/in the hydrogels in the adsorption applications. Equilibrium swelling ratio of the hydrogels at pH 0.5 is at least half of the equilibrium swelling ratio of the hydrogels at pH 7.0. Oscillatory swelling behavior of poly(NHMMA‐ATU) hydrogels between pH 0.5 and pH 7.0 showed that the hydrogels are quite stable at different pH conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1657–1664, 2006  相似文献   

10.
Radiation can induce chemical reactions to modify polymers even when they are in the solid state or at a low temperature. Radiation crosslinking can be easily adjusted by controlling the radiation dose and is reproducible. The finished product contains no residuals of substances required to initiate the chemical crosslinking, which can restrict its application possibilities. In these studies, hydrogels for wound dressing were made from a mixture of chitosan and polyvinyl alcohol (PVA)/poly‐N‐vinylpyrrolidone (PVP) by freezing and thawing, gamma‐ray irradiation, or combined freezing and thawing and gamma‐ray irradiation. The physical properties of the hydrogel, such as gelation, water absorptivity, and gel strength, were examined to evaluate the usefulness of the hydrogels for wound dressing. The PVA/PVP composition was 60:40, PVA/PVP–chitosan ratio was in the range 9:1–7:3, and the concentration of, PVA/PVP–chitosan as a solid was 15 wt %. A mixture of PVA/PVP–chitosan was exposed to gamma irradiation doses of 25, 35, 50, 60 and 70 kGy to evaluate the effect of irradiation dose on the physical properties of hydrogels. Water‐soluble chitosan was used in these experiment. The physical properties of the hydrogels, such as gelation and gel strength, were higher when the combination of freezing and thawing and irradiation were used rather than just freezing and thawing. The PVA/PVP–chitosan composition and irradiation dose had a greater influence on swelling than gel content. Swelling percent increased as the composition of chitosan in PVA/PVP–chitosan increased. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1787–1794, 2002  相似文献   

11.
Poly(γ-glutamic acid) (PGA) and poly(?-lysine) (PL) solutions were used as components to prepare mixed hydrogels by γ irradiation. A PGA and PL mixed solution was crosslinked to form a hydrogel with specific water content (weight of absorbed water/weight of dry gel) of 10–100 when the 5 wt % solution of mixed polymer was exposed to γ radiation of 87 kGy dosage under N2 atmosphere. The specific water content increased with increasing PGA content of the PGA/PL mixed gel. The influence of pH and salt concentration on equilibrium swelling was studied. A characteristic pH-sensitive swelling behavior was obtained using compositional changes of PGA and PL in the gel. PGA/PL 50/50 wt % mixed gel swelling in acid (pH < 4.0) and alkaline (pH > 6.0) conditions and was deswelled between pH 4.0 and 6.0 due to the ionic composition changes of the gel network. With an increase in the ratio of PGA to PL, the hydrogels showed increasing sensitivity to salt solutions (NaCl, Na2SO4, and CaCl2). In addition, degradation of PGA/PL gel by protease produced from Aspergillus oryzae was investigated at 40°C and pH 7.0. PL gel was degraded completely within 2 days. An increase in the ratio of PAG in the PGA/PL mixed gel led to a decrease in the degree of degradation as expected. Some subtle degradation changes were found in the 50/50 and 80/20 wt % (PGA/PL) gels that were degraded by only 3.5 and 3.8% by protease, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend hydrogels have immense potential for use as functional biomaterials. Understanding of influences of processing parameters and compositions on mechanical and swelling properties of PVA/SA blend hydrogels is very important. In this work, PVA/SA blend hydrogels with different SA contents were prepared by applying freeze–thaw method first to induce physical crosslinking of PVA chains and then followed by Ca2+ crosslinking SA chains to form interpenetrating networks of PVA and SA. The effects of number of freeze–thaw cycles, SA content and Ca2+ concentration on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels were investigated. The results showed that the blend hydrogels have porous sponge structure. Gel fraction, which is related to crosslink density of the blend hydrogels, increased with the increase of freeze–thaw cycles and strongly depended on SA content. The SA content exerts a significant effect on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels. The number of freeze–thaw cycles has marked impact on mechanical properties, but no obvious effect on the pH‐sensitivity of the PVA/SA blend hydrogels. Concentration of CaCl2 aqueous solution also influences mechanical properties and pH‐sensitivity of the blend hydrogel. By altering composition and processing parameters such as freeze–thaw cycles and concentration of CaCl2 aqueous solution, the mechanical properties and pH‐sensitivity of PVA/SA blend hydrogels can be tightly controlled. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Hydrogels, composed of poly(N‐vinyl‐2‐pyrrolidone) and crosslinked polyacrylamide, were synthesized and the release of vitamin B12 from these hydrogels was studied as a function of the degree of crosslinking and pH of the external swelling media. The three drug‐loaded hydrogel samples synthesized with different crosslinking ratios of 0.3, 0.7, and 1.2 (in mol %) follow different drug‐release mechanisms, that is, chain relaxation with zero‐order, non‐Fickian and Fickian, or diffusion‐controlled mechanisms. To establish a correlation between their swelling behavior and drug‐release mechanism, the former was studied by the weight‐gain method and, at the same time, the concentration of the drug released was studied colorimetrically. Various swelling parameters such as the swelling exponent n, gel‐characteristic constant k, penetration velocity v, and diffusion coefficient D were evaluated to reflect the quantitative aspect of the swelling behavior of these hydrogels. Finally, the drug‐release behavior of the hydrogels was explained by proposing the swelling‐dependent mechanism. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1706–1714, 2000  相似文献   

14.
Poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels were synthesized using gamma‐radiation‐initiated polymerization. The progress of copolymerization and crosslinking was observed by viscosity measurement on reaction mixtures subjected to varying radiation doses. The copolymer gels were characterized by differential scanning calorimetry, X‐ray diffraction, scanning electron microscopy, infrared spectroscopy, and elemental analysis. The swelling behavior and other properties of the gels were found to be very similar to those of poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels synthesized using conventional free‐radical initiation in the presence of crosslinkers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1322–1330, 2003  相似文献   

15.
Nanocomposite hydrogels were prepared by cross-linking of aqueous solutions of sulfonated polyacrylamide/sodium montmorillonite with chromium triacetate as ionic cross-linker. The effect of montmorillonite content on equilibrium swelling in NaCl and CaCl2 solutions, ultimate storage modulus and effective cross-link density was evaluated. The limiting storage modulus of the nanocomposite (NC) hydrogels dropped by increasing montmorillonite content up to 1,000?ppm, and then it increased by further montmorillonite loading. A mechanism is proposed for the formation of PAMPS/Na+-MMT/Cr3+ NC hydrogels. According to this mechanism, the drop in limiting storage modulus of the NC gels at low Na+-MMT concentration is due to ionic interactions between the negative layers of sodium montmorillonite and Cr3+, leading to decreased cross-link density. However, the increase of the limiting storage modulus of the NC gels at high clay concentration results from the strong interactions between the polyacrylamide chains and clay platelets. The equilibrium swelling ratio of the NC networks decreased with increase of montmorillonite content in both aqueous NaCl and CaCl2 solutions. In addition, the experimental swelling data of these NC hydrogels were described by a modified Flory?CRehner theory. The modified model was sensitive to montmorillonite concentration and it described adequately the swelling data for NC gels in NaCl solutions. Nevertheless, theoretical predictions showed some deviations from experimental results for swelling of NC hydrogels in CaCl2 solutions.  相似文献   

16.
Poly (vinyl pyrrolidone) hydrogels with kappa-carrageenan (KC) were synthesized by γ-ray irradiation. The conditions of synthesis such as variation of total radiation doses and concentration of KC were determined. The properties of the prepared hydrogels, such as gel strength, gel fraction, swelling ratio, and water absorption were evaluated. Gel strength and gel fraction attain maximum up to a certain dose but swelling ratio and water absorption decrease with increased total doses. Gel strength, swelling ratio, and water absorption increase with an increase in the concentration of KC but the gel fraction reduces.  相似文献   

17.
Extraction or concentration with temperature‐sensitive hydrogels is a novel separation technology. In this study, N‐isopropylacrylamide (NIPA) was synthesized by acrylonitrile and isopropanol. Poly(N‐isopropylacrylamide) (PNIPA) and copolymer of NIPA and 2‐acrylamide‐2‐methylpropane sulfonate [P(NIPA‐co‐AMPS)] hydrogels were prepared by radiation polymerization. Dependence of their swelling behavior on temperature was studied. Effects of radiation dose on polymerization, feed composition on thermoresponse, electrolyte on relative swelling ratio, and swelling and deswelling kinetics were investigated. The experimental results showed that P(NIPA‐co‐AMPS) hydrogels with low content of AMPS/NIPA (1–5 %), prepared at a radiation dose‐rate of 1 kGy/h and total dose of 30–40 kGy, could enhance the swelling ratio of PNIPA hydrogels significantly and raise the phase‐transition temperatures. P(NIPA‐co‐AMPS) hydrogels produced under optimum conditions were used to concentrate aqueous bovine serum albumin (BSA, M = 69 000 g mol?1) solution. When aqueous BSA concentration was below 5 %, the separation efficiency was more than 80 % with low cost and low energy consumption. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
A new method to prepare CM–chitosan hydrogels was introduced with the use of steam. The procedure was simple and economical, with no toxic chemicals involved. The steam‐induced crosslinking of CM–chitosan sodium salt involved the –NH2 and –COONa groups, forming amide linkages (–CONH–), evidently supported by FTIR spectroscopy and other techniques. The hydrogels instantly imbibed a great deal of water. The degree of swelling (DS) of the hydrogels was found to be up to 36, depending on the harshness of steaming conditions used. Likewise, the coloration of the samples increased from light beige to brown with increasing temperature and duration of steam exposure. The overall efficiency of the steam method for the crosslinking of CM–chitosan sodium salt was quite high. The percentage weight loss was found to be less than 10 to obtain hydrogels with DS values around 20. No weight loss in the dry weight of the fractionated hydrogels was observed when the samples were steamed at 115°C or higher for 15 min or longer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4016–4020, 2003  相似文献   

19.
Supramolecular hydrogels based on host–guest interactions have inherent flaw that the host molecules easily slide on or fall off the linear guest molecules, causing collapse of the networks. Hence, a double-crosslinking strategy is introduced in this study. The primary crosslinking formed via host–guest interactions between α-cyclodextrin (α-CD) and poly(ethylene glycol) dimethacrylate (PEGDMA) or between α-CD and four-arm poly(ethylene glycol) methacrylate (4arm PEG-MA). Then, secondary networks among PEGDMA or 4arm PEG-MA formed via UV-induced crosslinking. Results show that the fracture stress and fracture strain of PEGDMA-α-CD double-crosslinked hydrogels (P-C-U) increases up to 0.63 MPa and 71%, respectively, which significantly affected by molecular weight of PEGDMA. The double-crosslinking strategy helps increase the toughness up to 12.9 MJ m−3 (P6k-0.025M-C-U) and 17.23 MJ m−3 (4P10k-0.025M-C-U), as well as impart a certain degree of fatigue resistance to both PEGDMA hydrogels and 4arm-PEG-MA hydrogels, which is believed to be due to the energy dissipation mechanism introduced in the structure. The swelling capacity of double-crosslinked hydrogels is decreased compared to that with single-UV-crosslinked hydrogels, may be because the double-crosslinking strategy increases the crosslinking density of the hydrogel structure. In addition, both the molecular weight and concentration of PEGDMA and 4arm-PEG-MA influences the swelling capacity of the double-crosslinked hydrogels.  相似文献   

20.
Series of maleic mono‐ and diester monomers have been prepared by esterification of maleic anhydride with poly(ethylene glycol) having different molecular weights, and with n‐dodecyl alcohol. These monomers were copolymerized with 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) using different dose rates of electron‐beam irradiation ranging from 40 to 150 kGy. The synthesized copolymers were characterized by IR and 1H NMR analysis. Their aggregation behaviour and viscometric properties in aqueous solutions were investigated. The crosslinked copolymers were prepared in aqueous acidic solutions at pH 1 or in the presence of 1% of N,N‐methylene bisacrylamide (MBA) as crosslinking agent. The final equilibrium water content and swelling capacities for the prepared hydrogels were determined in aqueous solutions at pH = 1, 6.8 and 12 at 298 K. Swelling equilibria for the prepared hydrogels were carried out in aqueous solutions of NaCl, KCl, CaCl2, Na2SO4, K2SO4 and CaSO4 at concentrations ranging from 1 × 10?6 to 2 M at 298 K. © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号