首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Co-based catalysts for the oxygen reduction reaction (ORR) in an acid medium have been prepared from cobalt acetate (CoAc) adsorbed on nine different carbons (previously enriched in surface nitrogen or not). The catalysts were obtained by heat-treating these materials at 900 °C in a reducing environment rich in NH3. In this work, the emphasis was mainly placed on the electrochemical production of H2O2 as measured by the rotating ring-disk electrode (RRDE) technique. It is shown that all Co-based catalysts are active for ORR. The activity and specificity of the catalysts for peroxide production depend essentially on three factors: (i) the potential applied to the disk, (ii) the type of carbon support; and (iii) the concentration of the cobalt precursor. At identical Co loadings (2000 ppm), the percentage of peroxide produced at the disk (%H2O2) reaches a maximum in the 0.3-0.1 V versus SCE potential range and decreases for more negative potentials. When the potential is set at a constant value (100 mV versus SCE for instance), a strong effect of the carbon support on %H2O2 and on the ring current IR is noticed, with lower values of %H2O2 and IR corresponding to higher nitrogen content at the surface of the catalysts, while higher values of disk current ID are obtained under the same conditions. A figure of merit for the electroreduction of oxygen to hydrogen peroxide was obtained for each catalyst by multiplying ID (representing their activity for ORR) by %H2O2 (representing their specificity for H2O2 production). According to this figure of merit, the best catalysts for peroxide production are made with Ketjenblack, Black Pearls, Vulcan, and Norit carbon supports. For Co loadings higher than 2000 ppm, it is shown that increasing the loading by more than one order of magnitude (from 2000 to 50,000 ppm) has practically no effect on %H2O2 and IR, while ID decreases.  相似文献   

2.
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) ≈ Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) can be easily achieved by varying of the metal center. In addition, mechanism speculation is also presented to elucidate the dependence of catalytic behaviors on metal and cocatalyst.  相似文献   

3.
Dajian Zhu  Lijuan Chen  Tao Li 《Fuel》2011,90(6):2098-2102
The oxidative carbonylation of ethanol to diethyl carbonate (DEC) was investigated by an efficient catalyst system comprising of Co-Schiff base complexes. Effects of Schiff base ligands, reaction time, catalyst concentration, temperature and pressure on the catalytic activity were studied. Co(salophen) [N,N′-bis(salicylidene) o-phenylenediamine cobalt] catalyst exhibited better catalytic activity compared with other Co complexes. When the oxidative carbonylation was carried out at the reaction conditions: 0.12 mol/L Co(salophen), P(CO)/P(O2) = 2:1, 3.0 MPa, 140 °C, 2.5 h, the conversion of ethanol is 15.8%, the selectivity to DEC is 99.5% and the turnover number (TON) is 22.2. The corrosion behavior of Co(salophen) catalyst to the stainless steel reactor was also examined. The corrosion rate to the stainless steel by Co(salophen) catalyst is below 0.005 mm/a. SEM images demonstrated that the pitting corrosion was not observed on the surface of the stainless steel.  相似文献   

4.
Co-Te-O catalytic films, obtain by vacuum co-evaporation of Co and TeO2 are investigated as electrocatalysts for oxygen reactions in alkaline media. Bifunctional gas-diffusion oxygen electrodes (gde) are prepared by direct deposition of catalyst films on gas-diffusion membranes (gdm) consisting of hydrophobized carbon blacks or hydrophobized “Ebonex” (suboxides of titanium dioxide). Thus obtained electrodes with different atomic ratio RCo/Te of the catalyst, treated at different temperatures were electrochemically tested by means of cyclic voltammetry and steady-state voltammetry. It is shown that the electrodes exhibit high catalytic activity toward oxygen evolution and reduction reaction despite very low catalyst loading of about 0.05-0.5 mg cm−2.  相似文献   

5.
In this paper, carbon-supported cobalt-tripyridyl triazine (Co-TPTZ) complexes were synthesized by a simple chemical method, then heat-treated at 600, 700, 800, and 900 °C to optimize their activity for the oxygen reduction reaction (ORR). The resulting catalysts (Co-N/C) all showed strong catalytic activity toward the ORR, but the catalyst heat-treated at 700 °C yielded the best ORR activity. Co-N/C catalysts with several Co loadings - 0.64, 2.0, 2.96, 3.33, 5.28, and 7.18 wt% - were also synthesized and tested for ORR activity. X-ray diffraction and energy dispersive X-ray analysis were used to characterize these catalysts in terms of their structure and composition. To achieve further quantitative evaluation of the catalysts in terms of their ORR kinetics and mechanism, rotating disk electrode and rotating ring-disk electrode techniques were used with the Koutecky-Levich theory to obtain several important kinetic parameters: overall ORR electron transfer number, electron transfer coefficiency in the rate-determining step (RDS), chemical reaction rate constant, electron transfer rate constant in the RDS, exchange current density, and mole percentage of H2O2 produced in the catalyzed ORR. The overall electron transfer number for the catalyzed ORR was determined to be ∼3.5 with 14% H2O2 production, suggesting that the ORR catalyzed by Co-N/C catalysts is a mixture of 2- and 4-electron transfer pathways, dominated by a 4-electron transfer process; based on these measurements, an ORR mechanism is proposed based on the literature and our understanding, to facilitate further investigation. The stability of a Co-N/C catalyst was also tested by fixing a current density to record the change in electrode potential with time. For comparison, two other catalysts, Fe-N/C and TPTZ/C, were also tested for stability under the same conditions as the Co-N/C catalyst. Among these three, the 5 wt% Co-N/C was most stable.  相似文献   

6.
A series of CoMoS catalysts supported on hexagonal mesoporous silica (HMS) modified with different amounts of phosphate (0.5, 1.0, 1.5 and 2.0 wt.%) were prepared in order to study the influence of phosphate on catalyst deactivation. The catalysts were characterized by a variety of techniques (X-ray fluorescence, N2 adsorption-desorption at 77 K, FT-IR study of the framework vibration and NO adsorption, NH3-TPD, H2-TPR, XPS, 31P NMR and TPO/TGA). The sulfided catalysts were tested in the deep hydrodesulfurization (HDS) of 4,6-dimethyldibenzothiophene (4,6-DMDBT) performed in a fixed-bed flow reactor at 598 K, = 5.0 MPa and WHSV = 46.4 h−1. The catalyst with the largest phosphate content (2.0 wt.%) showed the best catalytic response linked with its low deactivation during on-stream reaction and a larger sulfidation degree of Co species. It was found that coking behavior is closely related with the location of the active sites in the support structure being a lower coke formation on the catalysts having active phases located within support structure. The catalysts modified with a large amount of phosphorous (1.5 and 2.0 wt.% of P2O5) were more susceptible to coking and produced a more polymerized coke than P-free sample, as confirmed by TPO/TGA experiments. The presence of P2O5 favours the sulfidation degree of Co species and the creation of medium strength acid sites leading to the enhancement of the 4,6-DMDBT HDS reaction toward the isomerization route.  相似文献   

7.
For the comparison of the electrochemical activity of Co(II)-amine complexes, the electrochemical response of an Au rotating disk electrode in alkaline Co(II)-glycine solutions to six amines: ethylenediamine (en), propane-1,2-diamine (pn-1,2), propane-1,3-diamine (pn-1,3), cyclohexane-1,2-diamine (chn), butane-1,4-diamine (bn), diethylenetriamine (dien), was studied. Addition of amines tested (except for bn) in mM levels shifts the open-circuit potential to more negative values by up to 0.5 V and enhances dramatically the anodic Co(II) oxidation current, as a result of Co(II) complex transformation into more stable and electrochemically active Co(II)-amine species. The effect of amines on the open-circuit potential changes in the line: dien ∼ en > pn-1,2 ∼ chn > pn-1,3 ? bn, and on the anodic current in the sequence: dien ∼ en > pn-1,2 > chn > pn-1,3 ? bn. The procedure described helps to select ligands for Co(II) complexes used as reducing agents in electroless plating solutions. The amines of high electrochemical response: dien, en, pn-1,2, and possibly, chn, are suitable for electroless copper deposition, pn-1,3 (a lower response), for electroless silver deposition, and bn (no response), not suitable for electroless plating solutions.  相似文献   

8.
CoxMg3 − x /Al composite oxides (xCoMAO-800) were prepared by calcination of CoxMg3 − x/Al hydrotalcites (x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, respectively) at 800 °C. The materials were characterized using XRD, TG-DSC, N2 adsorption-desorption and TPR. The methane catalytic combustion over the xCoMAO-800 was assessed in a fixed bed micro-reactor. The results revealed that cobalt can be homogenously dispersed into the matrices of the hydrotalcites and determines the structure, specific surface areas and porosity of the derived xCoMAO-800 oxide catalysts. The thermal stability and homogeneity of the hydrotalcites markedly depends on the cobalt concentration in the hydrotalcites. The Co-based hydrotalcite-derived oxides exhibit good activity in the catalytic combustion of methane. The catalytic activity over the xCoMAO-800 oxides enhances with increasing x up to 1.5, but subsequently decreases dramatically as cobalt loadings are further increased. The 1.5CoMAO-800 catalyst shows the best methane combustion activity, igniting methane at 450 °C and completing methane combustion around 600 °C. The catalytic combustion activity over the xCoMAO-800 oxides are closely related to the strong Co-Mg/Al interaction within the mixed oxides according to the TG-DSC, TPR and activity characteristics.  相似文献   

9.
Novel electro-catalyst based on phthalocyanine stabilized Pt colloids has been developed for methanol electro-oxidation. Water soluble Cu2+ phthalocyanine functioned with sulfonic groups were selected as catalyst supports because of the relatively high catalytic activity of Pt catalyst and nearly the same catalytic selectivity complex with Cu-phthalocyanine, compared to others that chelated with Fe, Co and Ni ions. The as-resulting Pt-CuTsPc catalysts have average particle size of 2 nm and narrow size distribution. With the assistance of CuTsPc supports, the methanol electro-oxidation activity and poison tolerance of Pt catalyst have a significant increase. If/Ib ratio (anodic peak current density, forward to backward) of the Pt-CuTsPc/C catalysts also has obvious increase to 2.5, from value of 0.8 for pure Pt/C catalyst. The reaction Tafel slope of Pt-CuTsPc/C catalysts is 56.6 mV dec−1, much smaller than that of the Pt/C catalyst. The transient current density on Pt-CuTsPc/C at 0.60 V is enhanced to 650% of that on the Pt/C catalyst while the enhancement factor R for comparison of steady-state current obtained on Pt-CuTsPc/C and Pt/C catalyst varies between 111% and 534% in the potential region of 0.3-0.75 V.  相似文献   

10.
Copper oxide (CuO)/copper oxalate (CuOx) modified non-enzymatic electrochemical sensor for the detection of glucose in alkaline medium was fabricated by electrochemical anodisation of copper electrodes in potassium oxalate solution. Morphology of the modified copper electrode was studied by Scanning Electron Microscopy (SEM) and its electrochemical behaviour by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The formation of CuOx on the copper electrode was confirmed by the Infra-red Reflection Absorption Spectrum (IRRAS). The modified electrodes were found to be microporous and rough. Linear Sweep Voltammetry (LSV) and amperometry were adopted to investigate the direct electrocatalytic oxidation of glucose on CuO/CuOx modified electrode in alkaline medium which showed excellent catalytic activity. The best performance of the sensor was obtained at 0.7 V and in 0.1 M sodium hydroxide (NaOH). At this optimum potential, the sensor was highly selective to glucose in the presence of ascorbic acid (AA) and uric acid (UA) which are common interfering species in biological fluids. The sensitivity was found to be very high (1890 μA mM−1 cm−2) with excellent linearity (R = 0.9999) up to 15 mM having a low detection limit of 0.05 μM (S/N = 3). The modified electrode was tested for glucose level in blood serum. Based on the optimised conditions, a working model of the sensor was made and successfully tested for glucose.  相似文献   

11.
A non-platinum cathode electrocatalyst must have the stability and catalytic activity for the oxygen reduction reaction (ORR) in order to be used in polymer electrolyte fuel cells (PEFCs). Titanium oxide catalysts as the non-platinum catalyst were prepared by the heat treatment of titanium sheets in the temperature range from 600 to 1000 °C. The prepared catalysts were chemically and electrochemically stable in 0.1 mol dm−3 H2SO4. The titanium oxide catalysts showed different catalytic activities for the ORR. The ORR of the catalysts heat-treated at around 900 °C occurred at the potential of about 0.65 V versus RHE. It is considered that the deference in the catalytic activity for the ORR of the heat-treated titanium oxide catalysts was due to the fact that the heat-treatment condition changed the material property of the catalyst surface. In particular, it was found that the catalytic activity for the ORR of the Ti oxide catalysts increased with the increase in the specific crystalline structure, such as the TiO2 (rutile) (1 1 0) plane and the work function. It is considered that a surface state change, such as the crystalline structure and work function, might affect the catalytic activity for the ORR.  相似文献   

12.
The conversion of methanol to dimethyl ether was carried out over various commercial zeolites and modified H-ZSM-5 catalysts to evaluate their catalytic performance. A series of commercially available zeolite samples were used for vapor-phase dehydration of methanol to DME. Catalyst screening tests were performed in a fixed-bed reactor under the same operating conditions (T = 300 °С, P = 16 barg, WHSV = 3.8 h1). It was found that all the H-form zeolite catalysts in this study were active and selective for DME synthesis. According to the experimental results MDHC-1 catalyst exhibited the highest activity in dehydration of methanol.After finding the most active catalyst, the H-MFI90 zeolite was modified with Na content varying from 0 to 120 mol%, via wet-impregnation method to further improve its selectivity. All of catalysts were characterized by BET, XRD, NH3-TPD, ICP, TGA, SEM, FT-IR and TPH techniques. It was found that these materials affected activity of MDHC-1 zeolite by changing its acidity. Ultimately, among all the catalysts studied, Na100-modified H-MFI90 zeolite exhibited optimum activity, selectivity and stability at methanol dehydration reaction.  相似文献   

13.
The catalytic activity of a series of M(= Ni, Co, Cu)/(CeO2)x–(MgO)1  x catalysts for methane combustion was investigated. (CeO2)x–(MgO)1  x supports were prepared by a sol-gel method. The influence of CeO2 content and active components such as Ni, Co and Cu are discussed. The results indicate that the activity of the catalysts depends strongly on CeO2 content. The Ni/(CeO2)0.1 − (MgO)0.9 catalyst showed the highest catalytic activity and good thermal stability for methane combustion. The highly dispersed NiO is the main active site for methane combustion. Fresh M (Ni, Co and Cu)/(CeO2)0.1–(MgO)0.9 catalysts showed that the activity of CuO for methane combustion was slightly higher than that of NiO and CoO, while the thermal stability increased in the order Cu < Co < Ni. Cu/(CeO2)0.1–(MgO)0.9 catalyst was sintered after a second evaluation. Consequently, (CeO2)0.1–(MgO)0.9 is deemed to be a good support for Ni.  相似文献   

14.
Cytochrome c/DNA modified electrode was achieved by coating calf thymus DNA onto the surface of glassy carbon electrode firstly, then immobilizing cytochrome c on it by multi-cyclic voltammetric method and characterized by the electrochemical impedance. The electrochemical behavior of cytochrome c on DNA modified electrode was explored and showed a quasi-reversible electrochemical redox behavior with a formal potential of 0.045 ± 0.010 V (versus Ag/AgCl) in 0.10 M, pH 5.0, acetate buffer solution. The peak currents were linearly with the scan rate in the range of 20-200 mV/s. Cytochrome c/DNA modified electrode exhibited elegant catalytic activity for the electrochemical reduction of NO. The catalytic current is linear to the nitric oxide concentration in the range of 6.0 × 10−7 to 8.0 × 10−6 M and the detection limit was 1.0 × 10−7 M (three times the ratio of signal to noise, S/N = 3).  相似文献   

15.
The influence of support type and cobalt cluster size (i.e., with average diameters falling within the range of 8-40 nm) on the kinetics of Fischer-Tropsch synthesis (FT) were investigated by kinetic tests employing a CSTR and two Co/γ-Al2O3 catalysts having different average pore sizes, and two Co/SiO2 catalysts prepared on the same support but having different loadings. A kinetic model that contains a water effect constant “m” was used to fit the experimental data obtained with all four catalysts. Kinetic parameters suggest that both support type and average Co particle size impact FT behavior. Cobalt cluster size influenced kinetic parameters such as reaction order, rate constant, and the water effect parameter. In the cluster size range studied, decreasing the average Co cluster diameter by about 30% led to an increase in the intrinsic reaction rate constant k, defined on a per g of catalyst basis, by 62-102% for the γ-Al2O3 and SiO2-supported cobalt catalysts. This increase was due to the higher active Co0 surface site density as measured by hydrogen chemisorption. Moreover, less inhibition by adsorbed CO and greater H2 dissociation on catalysts having smaller Co particles was suggested by the higher a and lower b values obtained for the measured reaction orders. Interestingly, irrespective of support type, the catalysts having smaller average Co particles were more sensitive to water. Comparing the catalysts having strong interactions between cobalt and support (Co/Al2O3) to the ones with weak interactions (Co/SiO2), the water effect parameters were found to be positive (indicating a negative influence on CO conversion) and negative (denoting a positive effect on CO conversion), respectively. No clear trend was observed for b values among the different supports, but greater a and a/b values were observed for both Al2O3-supported Co catalysts, implying greater inhibition of the FT rate by strongly adsorbed CO on Co/Al2O3 relative to Co/SiO2. For both supports, the order on PCO was always found to be negative (i.e., suggesting an inhibiting effect) and positive for PH2 for all four catalysts. The order of the reaction on PH2 was close to 0.5, suggesting that dissociated H2 is likely involved in the catalytic cycle. Finally, in the limited range of average pore diameters studied (13.5 and 18.2 nm), the average pore size of the Al2O3-supported Co catalysts displayed no observable impact on the reaction rate or water effect, suggesting either that the reaction is kinetically controlled, or that the pore size difference was not significant enough to elicit a measurable response.  相似文献   

16.
A novel electroactive material for ascorbic acid (AA) determination was successfully prepared by plating/potential cycling method. The cobalt film was first deposited on the surface of glassy carbon electrode (GCE) in CoSO4 solution by potential cycling, and then a cobalt film on the surface of GCE was activated by potential cycling in 0.1 mol L−1 NaOH. The electrochemical performance of the resulted film (Co/GCE) and factors affecting its electrochemical activity were investigated by cyclic voltammetry and amperometry. This film electrode exhibited good electrocatalytic activity to the oxidation of AA. This biosensor had a fast response of AA less than 3 s and excellent linear relationships were obtained in the concentration range of 3 × 10−7 to 1 × 10−4 mol L−1 with a detection limit of 2 × 10−7 mol L−1 (S/N = 3) under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

17.
Cobalt salen-type [salen=N,N′-bis(salicylidene)ethylenediamine] complexes 1–6 were studied as catalysts for dioxygen activation in the oxidation of veratryl alcohol in basic aqueous conditions. The complexes Co(salen) (1), Co(CH3salen) (2) [CH3salen=N,N′-bis(methylsalicylidene)ethylenediamine], Co(4OHsalen) (3) [4OHsalen=N,N′-bis(4-hydroxosalicylidene)ethylenediamine], Co(sulfosalen) (4) [sulfosalen=N,N′-bis(5-sulfonatosalicylidene)ethylenediamine], Co(acacen) (5) [acacen=N,N′-bis(acetylacetone)ethylenediamine) and Co(N-Me-salpr) (6) [N-Me-salpr=bis(salicylideniminato-3-propyl)methylamine] were chosen to examine the influence of ligand structure on the catalytic activity. The effect of reaction conditions on the oxidation of veratryl alcohol was studied by varying temperature, pH, time or the nature and amount of the axial base needed to enhance the activity of complexes 1–5. The catalytic behaviour of the studied complexes was shown to be very depended on the applied conditions and distinct differences could be observed among the complexes. In all reactions, veratraldehyde was the only product observed. The unsubstituted complex 1 was the most efficient catalyst in the studied system achieving turnover numbers of up to 28 at 80 °C and pH 12.5.  相似文献   

18.
Two chiral manganese(III) salen catalysts, bearing different chiral diamine bridges, were anchored by direct axial coordination of the metal centre onto the phenolate groups of a modified commercial activated carbon. The modification of the activated carbon was achieved by reaction between sodium hydroxide and surface phenol groups giving rise to phenolate groups (CoxONa), which were characterised by XPS, TG and TG-IR. Characterisation of immobilised manganese(III) salen catalysts onto CoxONa material by XPS, ICP-AES and TG-IR clearly point to reaction between carbon surface phenolate groups and the manganese(III) complexes through axial coordination of the metal centre to these groups.These materials were active and enantioselective in the epoxidation of styrene and α-methylstyrene in dichloromethane at 0 °C using, respectively, m-CPBA/NMO and NaOCl. Only for α-methylstyrene comparable asymmetric inductions were found in the epoxide as the homogeneous phase reactions and catalyst reuse led to no significant loss of catalytic activity and enantioselectivity.  相似文献   

19.
The conversion of methanol to dimethyl ether was carried out over various commercial mordenite and ion-exchanged catalysts to evaluate the catalytic performance of mordenite catalysts with different pore structures and acidities. These catalysts were compared for their catalytic properties in a fixed-bed reactor at 1 atm, 573 K and LHSV of 2.84 h− 1. The catalysts were characterized by BET, ICP, NH3-TPD, XRD, TGA and FT-IR techniques. The ion-exchanged mordenite showed higher activity, selectivity and good stability in dehydration of methanol due to the addition of medium acid sites. Also, the effect of water on catalyst deactivation was investigated over two selected catalysts in order to develop a suitable catalyst for synthesis of dimethyl ether. It was found that the H-mordenite catalyst supplied by Süd-chemie Co., (MCDH-1) was more active and less deactivated than another one in a feed containing 20 wt.% water.  相似文献   

20.
A modified electrode Ni(II)-Qu-MWCNT-IL-PE has been fabricated by electrodepositing Ni(II)-quercetin [Ni(II)-Qu] complex on the surface of multi-wall carbon nanotube ionic liquid paste electrode (MWCNT-IL-PE) in alkaline solution. The Ni(II)-Qu-MWCNT-IL-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-Qu-MWCNT-PE. It also shows good electrocatalytic activity toward the oxidation of glucose. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic current presents linear dependence on the concentration of glucose from 5.0 μM to 2.8 mM, with a detection limit of 1.0 μM by amperometry. The modified electrode for glucose determination is of the property of simple preparation, good stability, fast response and high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号