首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity–composition relations of FeCr2O4–FeAl2O4 and MnCr2O4–MnAl2O4 solid solutions were derived from activity–composition relations of Cr2O3–Al2O3 solid solutions and directions of conjugation lines between coexisting spinel and sesquioxide phases in the systems FeO–Cr2O3–Al2O3 and MnO–Cr2O3–Al2O3. Moderate positive deviations from ideality were observed.  相似文献   

2.
Phase equilibria in the system MnO–CoO–Cr2O3 were investigated at 1300°C under controlled oxygen partial pressures by using the gas equilibration technique. The CoO activities in various phase assemblages of the system were measured by determining the partial pressures of oxygen in the gas phase for coexistence with metallic cobalt. The activity data revealed that at 1300°C, MnO–CoO and MnCr2O4–CoCr2O4 solid solutions exhibit mild positive departures from ideal behavior. The activities in the stoichiometric spinel solutions were found to be in good agreement with those predicted from a model based on cation distribution equilibria. The standard free energy of formation of the compound CoCr2O4 from its oxide components at 1300°C was determined as −37 636 J/mol, while that for MnCr2O4 was found as −44 316 J/mol.  相似文献   

3.
The growth of nickel-aluminum spinel, NiAl2O4, in diffusion couples of polycrystalline Al2O3 and NiO was investigated between 1200° and 1500°C. The growth kinetics for the spinel layer obeyed a parabolic rate law in this temperature range. Marker experiments showed that the spinel layer formed by counterdiffusion of nickel and aluminum ions. Comparison of experimental and theoretical values of the parabolic rate constants suggests that the diffusion of aluminum ions through the spinel layer is rate controlling.  相似文献   

4.
Subsolidus phase relationships in the Ga2O3–In2O3–SnO2 system were studied by X-ray diffraction over the temperature range 1250–1400°C. At 1250°C, several phases are stable in the ternary system, including Ga2O3( ss ), In2O3( ss ), SnO2, Ga3− x In5+ x Sn2O16, and several intergrowth phases that can be expressed as Ga4−4 x In4 x Sn n −4O2 n −2 where n is an integer. An In2O3–SnO2 phase and Ga4SnO8 form at 1375°C but are not stable at 1250°C. GaInO3 did not form over the temperature range 1000–1400°C.  相似文献   

5.
Viscosity and density data were obtained up to 1700°C for a series of binary aluminoborate melts that contained as much as 15 mole% (∼21 wt%) Al2O3 and up to 1620°C for pure molten B2O3. Large expansion coefficient decreases and a slight activation energy increase for B2O3 above 1400°C suggested a tightening of its structure. The addition of Al2O3 reduced viscosity and increased activation energy. The decreased compositional dependence of molar volume (compared to SiO2 additions) and the increased expansion coefficients accompanying Al2O3 additions suggested a loosening of the O—B—O structure at 1600°C. Molar volume deviations from ideality were similar to but smaller than those for SiO2 and GeO2 additions at 1300°C. Microclustering of aluminum-bearing polyhedra appeared to occur at slightly higher boron atom contents than with SiO2 and GeO2 additions.  相似文献   

6.
Solid-state reactions between Li2O and Al2 O3 were studied in the region between Li2O.Al2 O 3 and Al2 O 3. The compound Li2 O Al2 O 3 melts at 1610°± 15°C. and undergoes a rapid reversible inversion between 1200° and 1300°C. Vaporization of Li2 O from compositions in the system proceeds at an appreciable rate at 1400°C, as shown by fluorescence. Lithium spinel, Li2 O -5Al2O3, was the only other compound observed. The effect of Li2 O on the sintering of alumina was investigated.  相似文献   

7.
Subsolidus phase relations in the system iron oride-Al2O2-Cr2O3 in air and at 1 atm. O2 pressure have been studied in the. temperature interval 1250° to 1500°C. At temperatures below 1318° C. only sesquioxides with hexagonal corundum structure are present as equilibrium phases. In the temperature interval 1318° to 1410°C. in air and 1318° to 1495° C. at 1 atm. O2, pressure the monoclinic phase Fe2O3. Al2O3 with some Cr2O3 in solid solution is present in the phase assemblage of certain mixtures. At temperatures above 1380°C. in air and above 1445°C. at 1 atm. O2 pressure a complex spinel solid solution is one of the phases present in appropriate composition areas of the system. X-ray data relating d- spacing to composition of solid solution phases are given.  相似文献   

8.
Phase relations in the spinel region of the system FeO-Fe2O3-Al2O3 were determined in CO2 at 1300°, 1400°, and 15000°C and for partial oxygen pressures of 4 × 10−7 and 7 × 10−10 atmospheres at 15OO°C. The spinel field extends continuously from Fe3O4-x to FeAl2O4+z.  相似文献   

9.
The rate of formation of NiAl2O4 by reaction between single crystals of NiO and Al2O3 can be described by k = 1.1 × 104 exp (−108,000 ± 5,000/ RT ) cm2/s. In NiO the behavior of D as a function of concentration supports the Lidiard theory of diffusion by impurity-vacancy pairs. A good fit of the theory to the experimental results was obtained by assuming that Al3+ ions diffuse as [AlNi· VNi]'pairs. The diffusion coefficient of pairs, Dp , obeys the equation 6.6 × 10−2 exp (−54,000 ± 3,000/ RT ) cm2/s. The free energy of association for pairs was calculated to range from 6.5 kcal/mol at 1789°C to 9.0 kcal/mol at 1540°C. The interdiffusion coefficients in the spinel showed a constant small increase with increasing concentration of Al3+ dissolved in the spinel.  相似文献   

10.
An isothermal section of the ternary system MgO–Al2O3-Cr2O3 was determined at 1700°± 15°C to delineate the stability field for spinel crystalline solutions (cs). Crystalline solutions were found between the pseudobinary joins MgAl2O4–Cr2O3 and MgCr2O4-Al2O3, and the binary join MgAl2O4-MgO. The first two crystalline solutions exhibit cation vacancy models while the latter can probably be designated as a cation interstitial model. Precipitation from spinel cs may proceed directly to an equilibrium phase, (Al1-xCrx)2O3, with the corundum structure or through a metastable phase of the probable composition Mg(Al1-xCr)26O40. The composition and temperature limits were defined where the precipitation occurs via metastable monoclinic phases. The coherency of the metastable monoclinic phase with the spinel cs matrix can be understood by considering volume changes with equivalent numbers of oxygens and known crystallographic orientation relations. Electron probe and metallographic microscope investigations showed no preferential grain boundary precipitation.  相似文献   

11.
Thermal and X-ray studies show that there is complete solid solution between MgO.Cr2O3 and MgO.Al2O3 and that the spinel solid solutions are stable with no exsolution down to temperatures as low as 510°C. There is no solid solution of excess Cr2O3 in MgO.Cr2O3 nor of MgO.Cr2O3 in Cr2O3. The join MgO.Cr2O3–Al2O3 is found to be nonbinary; compositions along that join yield mixtures of a chromium oxide-alumina solid solution and a spinel solid solution on firing to temperatures high enough to promote solid-state reaction. Chromium oxide loss by volatilization increases at higher temperature. At a given temperature, chromium oxide loss is found to vary directly with the partial pressure of oxygen in the furnace atmosphere and with the ratio of MgO to SiO2 in the charges heated.  相似文献   

12.
MgAl2O4 (MA) spinel powder was synthesized by heating an equimolar composition of MgO and Al2O3 in LiCl, KCl, or NaCl. The synthesis temperature can be decreased from >1300°C (required by the conventional solid–solid reaction process) to ∼1100°C in LiCl, or to ∼1150°C in KCl or NaCl. The molten salt synthesized MA powder was pseudomorphic and retained, to a large extent, the size and morphology of the original Al2O3 raw material, indicating that a "template formation mechanism" plays an important role in the synthesis process.  相似文献   

13.
In the system Ta2O3-Al2O5 solid solutions of metastable δ-Ta2O5 (hexagonal) are formed up to 50 mol% Al2O3 from amorphous materials prepared by the simultaneous hydrolysis of tantalum and aluminum alkoxides. The values of the lattice parameters decrease linearly with increasing Al2O3, content. The to β-Ta2O5 (orthorhombic, low-temperature form) transformation occurs at ∼950°C. The solid solution containing 50 mol% Al2O3 transforms at 1040° to 1100°C to orthorhombic TaAlO4. Orthorhombic TaAlO4 contains octahedral TaO6 groups in the structure.  相似文献   

14.
The preparation of near stoichiometric spinel and alumina-rich spinel composites from Al2O3and MgO powders with the addition of Na3AlF6up to 4 wt% in the temperature range 700°–1600°C was studied; 98 wt% spinel containing 72 wt% Al2O3can be produced from the mixture of 72 wt% (50 at.%) Al2O3+ 28 wt% (50 at.%) MgO powders with the addition of 1 wt% Na3AlF6fired at 1300°C for 1 h. Spinels containing 81–85 wt% Al2O3can be produced from either the mixture of 90 wt% (78 at.%) Al2O3+ 10 wt% (22 at.%) MgO or the mixture of 95 wt% (88 at.%) Al2O3+ 5 wt% (12 at.%) MgO powders with the addition of 4 wt% Na3AlF6in the temperature range 1300°–1600°C by using a torch-flame firing for 3 min, followed by quenching in water, while the same system under slow cooling in a furnace results in spinel containing 74–76 wt% Al2O3. Microscopic studies indicate that the alumina-rich spinel composites consist of a continuous majority spinel phase and an isolated minority corundum phase, regardless of slow cooling in a furnace or quenching in water.  相似文献   

15.
Phase relations in the system Na2O· Al2O3-CaO· Al2O3-Al2O3 at 1200°C in air were determined using the quenching method and high-temperature X-ray diffraction. The compound 2Na2O · 3CaO · 5Al2O3, known from the literature, was reformulated as Na2O · CaO · 2Al2O3. A new compound with the probable composition Na2O · 3CaO · 8Al2O3 was found. Cell parameters of both compounds were determined. The compound Na2O · CaO-2Al2O3 is tetragonal with a = 1.04348(24) and c = 0.72539(31) nm; it forms solid solutions with Na2O · Al2O3 up to 38 mol% Na2O at 1200°C. The compound Na2O · 3CaO · 8Al2O3 is hexagonal with) a = 0.98436(4) and c = 0.69415(4) nm. The compound CaO · 6Al2O3 is not initially formed from oxide components at 1200°C but behaves as an equilibrium phase when it is formed separately at higher temperatures. The very slow transformation kinetics between β and β "-Al2O3 make it very difficult to determine equilibrium phase relations in the high-Al2O3 part of the diagram. Conclusions as to lifetime processes in high-pressure sodium discharge lamps can be drawn from the phase diagram.  相似文献   

16.
Phase relations and lattice constants in the MgO–Al2O3–Ga2O3 system at 1550°C have been determined experimentally. In a large part of this system, only a nonstoichiometric spinel is stable. Compositions as extreme as 12.5 mol% MgO–20.5 mol% Ga2O3–67 mol% Al2O3 for a homogeneous spinel are possible. In the bordering phase diagrams of MgO–Al2O3 and MgO–Ga2O3, the composition of the spinel is as high as 63 mol% Al2O3 or Ga2O3, respectively. The contributions of all simple ionic exchange reactions on the lattice constant of the spinel have been deduced from X-ray diffractometry data.  相似文献   

17.
The phase relations in the pseudo-ternary system La2O3–SrO–Fe2O3 have been investigated in air. Isothermal sections at 1100° and 1300°C are presented based on X-ray diffraction and thermal analysis of annealed samples. Extended solid solubility was observed for the compounds Sr n +1− v La v Fe n O3 n +1−δ ( n =1, 2, 3, and ∞) and Sr1− x La x Fe12O19, while only limited solubility of La in Sr4− z La z Fe6O13±δ was observed. At high Fe2O3 content, a liquid with low La2O3 content was stable at 1300°C.  相似文献   

18.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

19.
Phase relations in air at 1300°C were determined for the system MgO-Cr2O3−Fe2O3 by conventional quenching techniques. Details of the phase equilibria were established for: (1) the sesquioxide solid solution between Cr2O3 and Fe2O3, (2) the spinel solid solution field between MgCr2O4 and MgFe2O4, and (3) the periclase solid solution field for MgO. Selected tie lines connecting coexisting compositions were established with X-ray diffractometer data. Diffuse reflectance spectra, diffractometer intensity ratios, and lattice parameter measurements were obtained for quenched samples to study the structural inversion in the spinel series MgCr2O4-MgFe2O4.  相似文献   

20.
Subsolidus phase equilibria in the system Fe2O3–Al2O3–TiO2 were investigated between 1000° and 1300°C. Quenched samples were examined using powder X-ray diffraction and electron probe microanalytical methods. The main features of the phase relations were: (a) the presence of an M3O5 solid solution series between end members Fe2TiO5 and Al2TiO5, (b) a miscibility gap along the Fe2O3–Al2O3 binary, (c) an α-M2O3( ss ) ternary solid-solution region based on mutual solubility between Fe2O3, Al2O3, and TiO2, and (d) an extensive three-phase region characterized by the assemblage M3O5+α-M2O3( ss ) + Cor( ss ). A comparison of results with previously established phase relations for the Fe2O3–Al2O3–TiO2 system shows considerable discrepancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号