共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of four strains of Lactococcus garvieae, three strains of Lactococcus lactis and one strain of Enterococcus faecalis on Staphylococcus aureus SA15 growth in microfiltered milk was evaluated. Lactococcus and Enterococcus strains were co-cultured with S. aureus in microfiltered milk and in medium buffered at pH 6.8. All Lactococcus and Enterococcus strains were able to inhibit S. aureus growth after 6h of incubation. Inhibition by L. lactis and E. faecalis strains could be partially attributed to the decrease in pH below 6.0 as it has been observed in medium buffered at pH 6.8. L. garvieae strains were the most effective to inhibit S. aureus growth without acidification. Inhibition of S. aureus could not be attributed neither to production of lactate, acetate or nor to antistaphylococcal substance. Amino acids competition was not involved in the inhibition by L. garvieae as addition of valine, isoleucine, threonine, methionine and phenylalanine did not suppress the inhibition of S. aureus. 相似文献
2.
The activity of chymosin, plasmin, and Lactococcus lactis enzymes (cell envelope proteinase, intracellular peptidases, and glycolytic enzymes) were determined after 5-min exposures to pressures up to 800 MPa. Plasmin was unaffected by any pressure treatment. Chymosin activity was unaffected up to 400 MPa and decreased at 500 to 800 MPa. Fifty percent of control chymosin activity remained after the 800 MPa treatment. The lactococcal cell envelope proteinase (CEP) and intracellular peptidase activities were monitored in cell extracts of pressure-treated cells. A pressure of 100 MPa increased the CEP activity, whereas 200 MPa had no effect. At 300 MPa, CEP activity was reduced, and 400 to 800 MPa inactivated the enzyme. X-Prolyl-dipeptidyl aminopeptidase was insensitive to 5-min pressure treatments of 100 to 300 MPa, but was inactivated at 400 to 800 MPa. Aminopeptidase N was unaffected by 100 and 200 MPa. However, 300 MPa significantly reduced its activity, and 400 to 800 MPa inactivated it. Aminopeptidase C activity increased with increasing pressures up to 700 MPa. High pressure did not affect aminopeptidase A activity at any level. Hydrolysis of Lys-Ala-p-NA doubled after 300-MPa exposure, and was eliminated at 400 to 800 MPa. Glycolytic enzyme activities of pressure-treated cells were evaluated collectively by determining the titratable acidity as lactic acid produced by cell extracts in the presence of glucose. The titratable acidities produced by the 100 and 200 MPa samples were slightly increased compared to the control. At 300 to 800 MPa, no significant acid production was observed. These data demonstrate that high pressure causes no effect, activation, or inactivation of proteolytic and glycolytic enzymes depending on the pressure level and enzyme. Pressure treatment of cheese may alter enzymes involved in ripening, and pressure-treating L. lactis may provide a means to generate attenuated starters with altered enzyme profiles. 相似文献
3.
Kives J Guadarrama D Orgaz B Rivera-Sen A Vazquez J SanJose C 《Journal of dairy science》2005,88(12):4165-4171
Three Lactococcus lactis ssp. cremoris isolates from refrigerated bulk raw milk were cultured separately and in association with a known psychrotrophic dairy Pseudomonas fluorescens strain, in skim UHT milk for 72 h at 7°C, to determine mutual influences in both the planktonic and biofilm phases. Two levels of inoculum of each culture partner were combined. Protocooperation and commensalism cases were found, all of them in the biofilm phase. Type and intensity of the interactions depended on Lactococcus strain and on the cell density of each partner. Maximum enhancement of attachment was observed to be approximately 100-fold for P. fluorescens and 20,000-fold for one of the L. lactis strains. Confocal scanning laser microscopy images show compact masses of Pseudomonas trapping lactococci cells in cooperative biofilms. 相似文献
4.
Shady El-Ghaish Michèle Dalgalarrondo Yvan Choiset Mahmoud Sitohy Iskra Ivanova Thomas Haertlé Jean-Marc Chobert 《Food chemistry》2010
A collection of cocci isolates (293) obtained from traditional Egyptian dairy products collected from four Egyptian regions yielded 151 lactic acid bacteria (LAB) cocci isolates. Among them, 24 isolates were characterised as highly proteolytic. SDS–PAGE showed that 6 isolates were the most proteolytically active, which were classified into Enterococcus faecalis HH22 (4 isolates) and Enterococcus faecium DO623 (2 isolates). The proteolytic activity of E. faecalis was higher than that of E. faecium (particularly on β-casein). The maximal degradation of milk proteins was achieved at pH 6.5–7.2 (E. faecalis) or pH 6.5 (E. faecium) and at 42 °C for both strains. The proteolytic activities of the two strains were inhibited mostly by the presence of EDTA, showing that their proteases belong mainly to metalloproteases. A slight inhibition of proteolysis by PMSF in the case of E. faecalis HH22 suggests a limited inclusion of serine proteases in its protease system. 相似文献
5.
Flavour development in cheese is affected by the integrity of Lactococcus lactis cells. Disintegrated cells enhance for instance the enzymatic degradation of casein to free amino acids, while integer cells are needed to produce specific flavour compounds from amino acids. The impact of the cellular activity of these integer cells on flavour production remains to be elucidated. In this study we investigated whether lactose-deprived L. lactis cells that use arginine as an alternative energy source can extend cellular activity and produce more specific flavours. In cheese experiments we demonstrated that arginine metabolising cells survived about 3 times longer than non-arginine metabolising cells, which suggests prolonged cellular activity. Cellular activity and flavour production of L. lactis was further studied in vitro to enable controlled arginine supplementation. Comparable with the results found in cheese, the survival rates of in vitro incubated cells improved when arginine was metabolised. Furthermore, elongated cellular activity was reflected in 3-4-fold increased activity of flavour generating enzymes. The observed prolonged cellular activity resulted in about 2-fold higher concentrations of typical Gouda cheese flavours. These findings provide new leads for composing starter cultures that will produce specific flavour compounds. 相似文献
6.
7.
The IL-12-inducing ability of lactic acid bacteria could be a critical index of immunomodulatory activity, especially in promoting T-helper-1 responses and in suppressing T-helper-2-mediated allergic responses. We aimed to develop a simple method for enhancing the IL-12-inducing ability of bacteria. We examined the in vitro effects of strains of lysozyme-modified Lactococcus (ML-LYS), prepared by heat treatment of the Lactococcus strain in the presence of lysozyme, on the ability of mouse macrophage-like J774.1 cells and spleen cells to produce IL-12. An IL-12-inducing ability greater than that of heat-killed bacteria was shown by 41 of 46 ML-LYS strains in J774.1 cells and by all 46 ML-LYS strains in mouse spleen cells. In contrast, bacteria modified by α-lactalbumin, β-lactoglobulin, or ovalbumin did not enhance IL-12 production in J774.1 cells. Microscopically, ML-LYS showed stronger resistance to lysozyme and macrophage digestion than did heat-killed bacteria or the other modified bacteria. Addition of chitotriose, a lysozyme inhibitor, enhanced IL-12 production by J774.1 cells stimulated with heat-killed bacteria. Therefore, enhancement of resistance to lysozyme may be a key factor in the strong IL-12-inducing ability of ML-LYS. These findings have important implications for the design of dairy products that have an immunomodulatory effect using the modified bacteria. 相似文献
8.
C.I. Pereira 《Journal of dairy science》2010,93(4):1335-1344
Model cheeses were manufactured according to a full factorial experimental design to help shed light on the individual and combined roles played by 3 native lactic acid bacteria (Lactococcus lactis ssp. lactis, Lactobacillus brevis, and Lactobacillus plantarum) upon proteolysis and organic acid evolution in cheese. The model cheeses were manufactured according to a generally representative Portuguese artisanal protocol, but the (ubiquitous) adventitious microflora in the cheesemaking milk were removed via sterilization before manufacture; therefore, the specific effects of only those lactic acid bacteria selected were monitored. In addition, 2 types of coagulant (animal and plant) and 3 types of cheesemaking milk (cow, sheep, and goat) were assessed to determine their influence on the final characteristics of the model cheeses. The nature of the coagulant appeared to be essential during the first stage of proteolysis as expected, whereas the contribution of those bacteria to the pools of total free AA and organic acids was crucial afterward. This was especially so in terms of the differences observed in the metabolisms of lactic acid (in the case of Lactococcus spp.) as well as acetic and citric acids (in the case of Lactobacillus spp.). 相似文献
9.
Reduction of counts of Listeria monocytogenes in cheese by means of high hydrostatic pressure 总被引:3,自引:0,他引:3
López-Pedemonte T Roig-Sagués A De Lamo S Hernández-Herrero M Guamis B 《Food microbiology》2007,24(1):59-66
Inactivation of Listeria monocytogenes (strains NCTC 11994 and Scott A) was evaluated in model cheeses submitted to 10 min HHP treatments of 300, 400 or 500 MPa at 5 or 20 degrees C. Counts were measured immediately after high hydrostatic pressure (HHP) treatment (day 1) and after 2, 15 and 30 days of storage at 8 degrees C. Both strains behaved significantly different after 400 and 500 MPa, being NCTC 11994 more sensitive. Scarce differences were found among final values at both HHP treatment temperatures. Initial reductions (log cfu/g) for 400 MPa at 20 degrees C were 2.9 +/- 0.2 for strain NCTC 11994 and 1.5 +/- 0.2 for Scott A. They reached after 30-day storage 5.3 +/- 0.2 and 4.6 +/- 0.4 log cfu/g for NCTC 11994 and Scott A, respectively. For 500 MPa treatments, day-1 reductions of both strains were around 5-log cfu/g, and counts fell below quantification limit after 30 days. Injured cells (around 0.8-log cfu/g) were mostly observed in 400 MPa treated samples on days 1 and 2. Starter cells suffered higher inactivation and injury. For 20 degrees C treatments, its final counts (log cfu/g) at 300, 400 and 500 MPa were: 8.5 +/- 0.2, 5.4 +/- 0.3 and 2.5 +/- 0.1, respectively. These figures evidence the HHP potential to improve safety of cheese products. 相似文献
10.
Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening 总被引:1,自引:0,他引:1
Turkish White-brined cheese was manufactured using Lactococcus strains (Lactococcus lactis ssp. lactis NCDO763 plus L. lactis ssp. cremoris SK11 and L. lactis ssp. lactis UC317 plus L. lactis ssp. cremoris HP) or without a starter culture, and ripened for 90 d. It was found that the use of starters significantly influenced the physical, chemical, biochemical, and sensory properties of the cheeses. Chemical composition, pH, and sensory properties of cheeses made with starter were not affected by the different starter bacteria. The levels of soluble nitrogen fractions and urea-PAGE of the pH 4.6-insoluble fractions were found to be significantly different at various stages of ripening. Urea-PAGE patterns of the pH 4.6-insoluble fractions of the cheeses showed that considerable degradation of αs1-casein occurred and that β-casein was more resistant to hydrolysis. The use of a starter culture significantly influenced the levels of 12% trichloroacetic acid-soluble nitrogen, 5% phosphotungstic acid-soluble nitrogen, free amino acids, total free fatty acids, and the peptide profiles (reverse phase-HPLC) of 70% (vol/vol) ethanol-soluble and insoluble fractions of the pH 4.6-soluble fraction of the cheeses. The levels of peptides in the cheeses increased during the ripening period. Principal component and hierarchical cluster analyses of electrophoretic and chromatographic results indicated that the cheeses were significantly different in terms of their peptide profiles and they were grouped based on the use and type of starter and stage of ripening. Levels of free amino acid in the cheeses differed; Leu, Glu, Phe, Lys, and Val were the most abundant amino acids. Nitrogen fractions, total free amino acids, total free fatty acids, and the levels of peptides resolved by reverse phase-HPLC increased during ripening. No significant differences were found between the sensory properties of cheeses made using a starter, but the cheese made without starter received lower scores than the cheeses made using a starter. It was found that the cheese made with strains NCDO763 plus SK11 had the best quality during ripening. It was concluded that the use of different starter bacteria caused significant differences in the quality of the cheese, and that each starter culture contributed to proteolysis to a different degree. 相似文献
11.
Nataša Golić Neža Čadež Amarela Terzić-Vidojević Hana Šuranská Jasna Beganović Jelena Lozo Blaženka Kos Jagoda Šušković Peter Raspor Ljubiša Topisirović 《International journal of food microbiology》2013
The goal of this study was the characterisation of indigenous lactic acid bacteria (LAB) and yeasts isolated from nine white pickled (BG) and nine fresh soft (ZG) artisanal cheeses collected in Serbia and Croatia. While LAB were present in all of the cheeses collected, yeasts were found in all BG cheeses but only in three ZG cheese samples. High LAB and yeast species diversity was determined (average H′L = 0.4 and H′Y = 0.8, respectively). The predominant LAB species in white pickled (BG) cheeses were Lactococcus lactis, Lactobacillus plantarum, and Leuconostoc mesenteroides, while in fresh soft (ZG) cheeses the most dominant LAB species were L. lactis, Enterococcus faecalis, and Leuconostoc pseudomesenteroides. Among the 20 yeast species found, Debaryomyces hansenii, Candida zeylanoides, and Torulaspora delbrueckii were found to be predominant in BG cheeses, while Yarrowia lipolytica was predominant in ZG cheeses. The characterisation of metabolic and technological potentials revealed that 53.4% of LAB isolates produced antimicrobial compounds, 44.3% of LAB strains showed proteolytic activity, while most of the yeast species possessed either lipolytic or proteolytic activity. In conclusion, the results obtained in this study showed that the composition of LAB and yeast populations in white pickled and fresh soft cheeses is region specific. The knowledge gained in this study could eventually be used to select region specific LAB and yeast strains for the production of white pickled and fresh soft artisanal cheeses with geographically specific origins under controlled conditions. 相似文献
12.
The combined effects of high pressure processing (HPP) and pH on the glycolytic and proteolytic activities of Lactococcus lactis subsp. lactis, a commonly used cheese starter culture and the outgrowth of spoilage yeasts of Candida species were investigated in a fermented milk test system. To prepare the test system, L. lactis subsp. lactis C10 was grown in UHT skim milk to a final pH of 4.30 and then additional samples for treatment were prepared by dilution of fermented milk with UHT skim milk to pH levels of 5.20 and 6.50. These milk samples (pH 4.30, 5.20 and 6.50) with or without an added mixture of two yeast cultures, Candida zeylanoides and Candida lipolytica (105 CFU mL−1 of each species), were treated at 300 and 600 MPa (≤20 °C, 5 min) and stored at 4 °C for up to 8 weeks. Continuing acidification by starter cultures, as monitored during storage, was substantially reduced in the milk pressurised at pH 5.20 where the initial titratable acidity (TA) of 0.40% increased by only 0.05% (600 MPa) and 0.10% (300 MPa) at week 8, compared to an increase of 0.30% in untreated controls. No substantial differences were observed in pH or TA between pressure-treated and untreated milk samples at pH 4.30 or 6.50. The rate of proteolysis in milk samples at pH values of 5.20 and 6.50 during storage was significantly reduced by treatment at 600 MPa. Treatment at 600 MPa also reduced the viable counts of both Candida yeast species to below the detection limit (1 CFU mL−1) at all pH levels for the entire storage period. However, samples treated at 300 MPa showed recovery of C. lipolytica from week 3 onwards, reaching 106–107 CFU mL−1 by week 8. In contrast, C. zeylanoides did not show any recovery in any of the pressure-treated samples during storage. 相似文献
13.
The poor survival of probiotic bacteria in commercial yogurts may limit their potential to exert health benefits in humans. The objective was to improve the survival of bifidobacteria in fermented milk. Cocultivation with some strains of Lactococcus lactis ssp. lactis improved the survival of bifidobacteria in fermented milk during refrigerated storage. Studies on one strain, Lc. lactis ssp. lactis MCC866, showed that the concentrations of dissolved oxygen were kept lower in the cocultivated fermented milk during storage compared with monocultured Bifidobacterium longum BB536 or samples cocultured with another noneffective Lc. lactis ssp. lactis strain. Degradation of genomic DNA was suppressed in the cocultivating system with Lc. lactis ssp. lactis MCC866. Several genes that participated in protection from active oxygen species (e.g., genes coding for alkyl hydroperoxide reductase and Fe2+ transport system) were expressed at higher levels during refrigerated storage in Lc. lactis ssp. lactis MCC 866 compared with another noneffective Lc. lactis ssp. lactis strain. Concentration of free iron ion was also lower in supernatants of fermented milk cocultivated with B. longum BB536 and Lc. lactis ssp. lactis MCC866. These results suggest that Lc. lactis ssp. lactis MCC 866 is potentially superior in reducing oxygen damage and consequently improves the survival of bifidobacteria in the cocultivating system. This cocultivation system is of industrial interest for producing fermented milk containing viable bifidobacteria with long shelf life. 相似文献
14.
Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens 总被引:1,自引:0,他引:1
Essential oils (EOs) of three Apiaceae species, including Bunium persicum, Cuminum cyminum and Carum copticum, extracted by hydrodistillation, were analyzed by gas chromatography (GC) and GC/mass spectrometry. The main components of EOs of B. persicum were γ-terpinene (44.2%), cuminaldehyde (16.9%), γ-terpinen-7-al (10.5%), and ρ-cymene (8%). The major constituents of Cu. cyminum were cuminaldehyde (30.2%), ρ-cymene (14.1%), γ-terpinene (12.8%), and safranal (9.4%), while those of Ca. copticum were thymol (48.4%), ρ-cymene (21.8%) and γ-terpinene (21.3%). The antibacterial effects of the EOs were assessed on several food-borne pathogens, namely Staphylococcus aureus, Bacillus cereus, Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. The ranges of minimum inhibitory concentration (MIC) of the oils were 0.03–0.5, 0.18–3.0, and 0.37–3.0 mg/ml, respectively, for Ca. copticum, B. persicum and Cu. cyminum. Moreover, the combination of B. persicum and Cu. cyminum EOs confirmed synergistic and additive activities against the pathogens. 相似文献
15.
Buňková L Buňka F Pollaková E Podešvová T Dráb V 《International journal of food microbiology》2011,147(2):112-119
The aim of this work was to study, under model conditions, combined effects of the concentration of lactose (0-1% w/v), NaCl (0-2% w/v) and aero/anaerobiosis on the growth and tyramine production in 3 strains of Lactococcus lactis subsp. lactis and 2 strains of L. lactis subsp. cremoris. The levels of the factors tested were chosen with respect to the conditions which can occur during the real process of natural cheese production, including the culture temperature (10 ± 1 °C). In all strains tested, tyrosine decarboxylation was most influenced by NaCl concentration; the highest production of tyramine was obtained within the culture with the highest (2% w/v) salt concentration applied. Two of the strains L. lactis subsp. lactis produced tyramine only in broth with the highest NaCl concentration tested. In the remaining 3 strains of L. lactis, tyramine was detected under all conditions applied. The tested concentration of lactose and aero/anaerobiosis had a less significant effect on tyramine decarboxylation. However, it was also found that at the same concentrations of NaCl and lactose, a higher amount of tyramine was detected under anaerobic conditions. In all strains tested, tyramine decarboxylation started during the active growth phase of the cells. 相似文献
16.
Lupin seeds of different species representing diverse varieties of sweet lupin grown in Poland were investigated. The chemical compositions of lupin isolates and amino acid composition of the proteins, as well as the nutritive values were estimated. No significant differences (P ? 0.05) were observed among lupin isolates in their dry matter, crude fibre or alkaloid contents. The highest protein content (465 ± 11 g/kg d.m.) was found in seeds from lupins belonging to Lupinus luteus (P ? 0.01), while the highest oil content (ca. 115 g/kg d.m.) was found in Lupinus albus (P ? 0.05). 相似文献
17.
The interactions of the 936-species phages sk1, jj50, and 64 with the cell surface of Lactococcus lactis LM0230 were analyzed. Cell envelopes (walls + plasma membrane), cell wall, or plasma membrane from L. lactis ssp. lactis LM0230 each inactivated the phages in vitro. However, other 936-species phages kh and P008, which do not infect strain LM0230, were not inactivated by any of the subcellular fractions. Treating cell walls or plasma membrane with the cell wall hydrolase mutanolysin eliminated inactivation of phage sk1. This suggested that intact cell wall fragments were required for inactivation. A role for plasma membrane in phage sk1 inactivation was further investigated. Boiling, washing in 2 M KCl, 8 M urea, or 0.1 M Na(2)CO(3)/pH 11, or treating the plasma membrane with proteases did not reduce adsorption or inactivation of phage. Adding lipoteichoic acid or antibodies to lipoteichoic acid did not reduce inactivation of phage in a mixture with membrane, suggesting that lipoteichoic acid was not involved. Inactivation by envelopes or cell wall correlated with ejection of DNA from the phage sk1 capsid. Although calcium is required for plaque formation, it was not required for adsorption, inactivation, or ejection of phage DNA by envelopes or cell wall. The results suggest that at least for phages sk1, jj50, and 64, adsorption and phage DNA injection into the host does not require a host membrane protein or lipoteichoic acid, and that cell wall components are sufficient for these initial steps of phage infection. 相似文献
18.
19.
Selection of starter and adjunct cultures is important to minimize bitterness of Cheddar and Gouda cheeses. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry may be useful for rapid screening of cheese cultures for propensity to produce bitter cheese. The objective of this study was to demonstrate the application of MALDI-TOF for differentiating intracellular peptidase activities of starter and adjunct cultures on β-CN f193-209 under simulated cheese condition. Bovine β-casein was incubated with chymosin in 9.55 g/l citrate buffer (pH 5.4, 40 g/l sodium chloride) at 30°C for 24 h, followed by incubation with cell-free extract (CFE) of starter or adjunct culture. Mixed strains of Lactococcus lactis ssp. lactis and L. lactis ssp. cremoris designated as 56 and 105 were the sources of nonbitter and bitter starter cultures, respectively. Lactobacillus helveticus WSU-19 and W900R represented adjunct cultures having high and low debittering activities, respectively. The degradation pattern of β-CN f193-209 by CFE of WSU-19 indicates general aminopeptidase and endopeptidase activities, while degradation of the peptide by CFE of W900R, 56, and 105 are mainly from endopeptidase activity. The rates of β-CN f193-209 hydrolysis by CFE of WSU-19, W900R, 56, and 105 are 6.90, 0.38, 0.39, and 0.23 mg/l per h, respectively. 相似文献
20.
Izabela Berdowska Bogdan Zieliński Izabela Fecka Julita Kulbacka Jolanta Saczko Andrzej Gamian 《Food chemistry》2013
The aim of this study was to evaluate the cytotoxicity of dried aqueous extracts from Thymus serpyllum (ExTs), Thymus vulgaris (ExTv), Majorana hortensis (ExMh), and Mentha piperita (ExMp), and the phenolic compounds caffeic acid (CA), rosmarinic acid (RA), lithospermic acid (LA), luteolin-7-O-glucuronide (Lgr), luteolin-7-O-rutinoside (Lr), eriodictiol-7-O-rutinoside (Er), and arbutin (Ab), on two human breast cancer cell lines: Adriamycin-resistant MCF-7/Adr and wild-type MCF-7/wt. In the MTT assay, ExMh showed the highest cytotoxicity, especially against MCF-7/Adr, whereas ExMp was the least toxic; particularly against MCF-7/wt cells. RA and LA exhibited the strongest cytotoxicity against both MCF-7 cell lines, over 2-fold greater than CA and Lgr, around 3-fold greater than Er, and around 4- to 7-fold in comparison with Lr and Ab. Except for Lr and Ab, all other phytochemicals were more toxic against MCF-7/wt, and all extracts exhibited higher toxicity against MCF-7/Adr. It might be concluded that the tested phenolics exhibited more beneficial properties when they were applied in the form of extracts comprising their mixtures. 相似文献