首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
层状锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的制备及性能   总被引:2,自引:0,他引:2  
采用共沉淀法得到前驱体Ni0.8Co0.1Mn0.1(OH)2,利用前驱体与LiOH×H2O的高温固相反应得到高振实密度的锂离子电池层状正极材料LiNi0.8Co0.1Mn0.1O2 (2.3~2.5 g/cm3). 初步探讨了合成条件对材料电化学性能的影响. 通过X射线衍射(XRD)、扫描电镜(SEM)、热重-差热分析(TG/DTG)以及恒电流充放电测试对合成的样品进行了测试和表征. 结果表明,在750℃、氧气气氛下合成的材料具有较好的电化学性能. 通过XRD分析可知该材料为典型的六方晶系a-NaFeO2结构;SEM测试发现产物粒子是由500~800 nm的一次小晶粒堆积形成的二次类球形粒子. 电化学测试表明,其首次放电容量和库仑效率分别为168.6 mA×h/g和90.5%, 20次循环后容量为161.7 mA×h/g,保持率达到95.9%,是一种具有应用前景的新型锂离子电池正极材料.  相似文献   

2.
采用静电纺丝技术结合低温固相煅烧合成了中空多孔的LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维,并通过球磨方式实现了碳纳米管表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维。采用TG-DTA、XRD、SEM等分析手段,对合成样品的煅烧温度、物相结构和微观形貌进行表征,然后对其综合电化学性能进行研究。结果表明:CNT表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维可显著改善材料的综合电化学性能。其首次放电比容量达到242.8m Ah/g,1C循环50次后容量保持率达到91.61%,2C倍率放电比容量达到165.8m Ah/g。CNT独特的管状结构,促进了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量的发挥,同时为循环过程中电极体积变化提高缓冲层,改善了材料的电子电导率,结合LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维中空多孔结构为锂离子快速扩散提供了通道,从而实现了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量、倍率和循环性能的显著提高。  相似文献   

3.
基于水热/溶剂热法制备LiNi0.8Co0.1Mn0.1O2电极材料,以镍、钴、锰乙酸盐为原料,以六亚甲基四胺为沉淀剂、水或乙醇为溶剂,通过调节溶剂组分控制Ni0.8Co0.1Mn0.1(OH)2(NCM)的成核与生长速率,从而合成两种形貌不同的Ni0.8Co0.1Mn0.1(OH)2前驱体,再经过混锂煅烧获得LiNi0.8Co0.1Mn0.1O2正极材料,研究比较了其电化学性能。以水为溶剂通过水热法合成的前驱体样品呈现出由一次片状颗粒紧密堆积组成的长方体状二次颗粒形貌,经混锂煅烧得到的产物表现出较高的放电比容量,在0.5C倍率下首次放电比容量可达到189.70 mA·h/g,循环200次容量保持率为69.72%。以乙醇为溶剂通过溶剂热法合成得到球形二次颗粒前驱体,最终得到的产物具有多孔球形结构,表现出了优异的循环性能,0.5C首次放电比容量为178.65 mA·h/g,循环200次容量保持率仍高达94.55%。  相似文献   

4.
采用高温固相法合成锂离子电池富镍三元材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2,对其工艺条件进行优化,对产物进行X射线衍射(XRD),扫描电镜(SEM)以及电化学性能分析。结果表明:在氧气气氛下,锂与金属元素摩尔比为1.05:1、烧结时间15 h、烧结温度750℃为最佳合成工艺条件。按最佳工艺合成的样品在1C首次放电容量高达174.9mA·h·g~(-1),50次循环后比容量为158.5 mA·h·g~(-1),容量保持率为90.62%,表现出良好的循环稳定性。XRD和SEM表征表明,在氧气气氛下烧结的样品有良好的层状结构,阳离子混排程度小,具有较好的类球形,粒径均匀分布在10~20μm。循环伏安(CV)和电化学阻抗(EIS)结果表明,工艺条件的优化有助于提高正极材料的电化学性能。  相似文献   

5.
以球形前驱体Mn0.6Ni0.2(OH)1.6及碳酸锂为原料,通过高温固相法合成富锂锰基正极材料Li1.2Mn0.6Ni0.2O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对不同锂盐用量条件下得到的Li1.2Mn0.6Ni0.2O2的结构和形貌进行了表征,并对其进行了电化学性能测试。结果表明:当锂盐用量过量4%时,合成的Li1.2Mn0.6Ni0.2O2的晶体结构最完整、球形形貌更规则、电化学性能优异。在0.2 C和1.0 C下首次放电比容量可达250.7、235.2 m A·h/g;1.0 C下循环50次后,容量保持率为86.86%。  相似文献   

6.
采用微波共沉淀法合成了制备LiNi0.8Co0.2O2的前驱体球形α-Ni0.8Co0.2(OH)2,将其与LiOH·H2O混合,在氧气氛围下,用不同的烧结温度分别烧结10小时获得LiNi0.8Co0.2O2正极材料。用XRD、SEM对所制备的正极材料进行结构和形貌分析,用恒流充放电测试材料的电化学性能。结果表明,烧结温度对材料结构和电化学性能影响较大,所合成材料均具有α-NaFeO2的层状结构,烧结温度越高材料结晶越完善。900℃烧结的LiNi0.8Co0.2O2材料初级颗粒结晶最完善而且其二次团聚粒子的平均粒径最小,其表现出的电化学性能也最好,首次放电容量为189.1mA·h·g-1,首次循环放电效率达到92.5%。30循环后放电容量保持在148 mA·h·g-1,显示出较好的循环稳定性。  相似文献   

7.
采用共沉淀法合成了球型前驱体Ni_(0.25)Mn_(0.75)(OH)_2,与锂源混合煅烧得到锂离子电池正极材料Li_(1.2)Ni_(0.2)Mn_(0.6)O_2,并对其进行铝掺杂改性,得到样品Li_(1.2)(Ni_(0.2)Mn_(0.6))_(1-x)Al_(0.8x)O_2(x=0~0.03)。利用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对各个样品的结构、形貌和电化学性能进行了表征,结果表明:掺杂铝后,样品具有规则的球形形貌,层状结构保持完整,阳离子混排程度降低,铝掺杂量为2%的样品(x=0.02)阳离子混排程度最小,结构最稳定,具有较高的首次充放电效率和最优异的循环性能,其首次充放电效率为84.2%,1C倍率下循环50次的容量保持率为95.7%。  相似文献   

8.
采用溶胶-凝胶法合成富锂锰基(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)正极材料,考察反应pH对材料结构、形貌及电化学性能的影响。X射线衍射(XRD)分析结果表明,制备的材料(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)结晶良好,均为理想层状结构的富锂锰基材料。扫描电子显微镜(SEM)分析结果显示,pH 7.0时制得的材料颗粒细小,分散均匀。充放电性能测试结果显示,pH 7的样品具有良好的电化学性能,在2.0~4.8 V以0.05 C充放电时,首次容量达到263 m Ah/g。同时具有良好的倍率性能,1.0 C放电容量达到200 m Ah/g。  相似文献   

9.
以共沉淀法制备出的球形Ni0.5Co0.3Mn0.2(OH)2为前驱体,以碳酸锂为锂源,通过高温固相法合成了球形LiNi0.5Co0.3Mn0.2O2正极材料。通过热重分析(TGA/DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分布、以及电化学性能的测试考查了不同烧结温度对LiNi0.5Co0.3Mn0.2O2的物理性能及电化学性能的影响。结果表明,900℃下烧结得到的LiNi0.5Co0.3Mn0.2O2晶体结构完整、球形形貌规则、粒度分布均匀,并表现出了优异的电化学性能,0.2 C首次放电容量达到了166.7 mA.h/g;1 C首次放电容量为151.6 mA.h/g,20次循环后,容量保持率高达97.9%。  相似文献   

10.
以氧化石墨为模版剂,以FeSO_4·7H_2O、H_3PO_4、LiOH·H_2O、水合肼为原料,采用水热法在185℃下分别反应2、4、6 h合成磷酸铁锂前驱体,然后高温煅烧合成新型梭形LiFePO_4/C复合锂离子电池正极材料。通过TGDSC确定高温煅烧温度为600℃,采用XRD、SEM、LAND电池测试仪等分析测试手段对材料的结构、形貌及电化学性能进行测试,发现:185℃/(4 h)水热反应的前驱体经600℃/(2 h)获得的梭形LiFePO_4/C材料具有较好的电化学性能,室温、0.2 C下,2.7~4.2 V电压范围进行充放电测试,放电比容量达141.2 m Ah/g。  相似文献   

11.
以Mn(CH_3COO)_2、Ni(CH_3COO)_2和CH_3COOLi为原料,采用流变相法制备正极材料LiNi_(0.5)Mn_(1.5)O_4,对烧结温度、时间、以及配锂量等合成条件进行了优化。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电仪对材料的物相、形貌和电化学性能进行了表征。结果表明,在锂源过量5%,850℃煅烧6 h合成的材料具有最好的电化学性能,以0.1 C倍率下放电比容量为127.1 m Ah/g,50次循环后,容量保持率为95.4%。  相似文献   

12.
以尿素为沉淀剂,以乙二醇为溶剂,通过溶剂热法制备出多级前躯体Ni0.8Mn0.1Co0.1CO3,通过焙烧该前躯体和LiOH·H2O的混合物制备出高比容量的锂离子正极材料LiNi0.8Mn0.1Co0.1O2。采用XRD、FESEM及恒流充放电测试对材料的结构、形貌和电化学进行表征,结果表明,合成的产物形貌均一,有高结晶度。在0.1 C倍率下,放电比容量为194.6 mAh g-1;当放电倍率提高到2.0 C时,该材料仍然具有78.4mAhg-1的放电比容量,并且该材料在各个倍率下具有良好的稳定性。在1.0 C的放电倍率下,经过50次循环,放电容量保持率为92.5%。  相似文献   

13.
利用超细旋转盘式砂磨机细化颗粒固相烧结法,合成锂离子电池正极材料Li Ni0.80Co0.15Al0.05O2。原料经过砂磨后,混合均匀,粒径达到纳米级。根据塔曼定理,混合均匀的微小粒径可以在相同的烧结温度下,提高烧结的强度。SEM、XRD分别表征NCA材料的颗粒形貌和晶形结构。结果显示,通过细化颗粒烧结后的样品具有良好的形貌和层状结构。CV法测试样品的氧化还原性能,电池测试系统测试样品的电化学性能。测试结果显示,经过细化颗粒,在720℃合成的NCA材料具有良好的层状结构,018/110峰分裂明显。样品的电化学性能优良,0.2C下,首次放电容量达到182 m Ah?g?1,30次循环后容量保持率99.9%。1C下,首次放电容量153 m Ah?g?1,100次循环后容量保持率92.6%。  相似文献   

14.
采用湿化学法,对高镍正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2进行不同比例的Co_3O_4表面包覆改性研究。利用XRD、SEM、TEM等测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对各样品的电化学性能进行了测试。其中0.5%(wt)Co_3O_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2样品表现出最佳的首次充放电性能、循环性能和高温稳定性能。在55℃下循环180圈后,仍具有142.9 mA·h·g~(-1)的放电比容量,容量保持率为63.7%。同时借助电化学阻抗(EIS)测试对改性的原因进行了分析。  相似文献   

15.
柳孟良  陶熏 《广东化工》2016,(16):108-109
采用二步固相法制备了Li_4Ti_(4.95)Nb_(0.05)O_(12)负极材料,扫描电镜、激光粒度分布仪、充放电测试和循环伏安等测试结果表明:合成的样品粒径分布均匀,Nb掺杂改性的Li_4Ti_5O_(12)具有优良的电化学性能,0.1 C、0.5 C、1 C和10 C首次放电比容量分别为174.1 m Ah/g、159.7 m Ah/g、147 m Ah/g和123.3 m Ah/g。10 C下,循环20次后容量保持为118.1 m Ah/g。  相似文献   

16.
采用湿法融合技术及高温固相法合成Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等方法研究材料的结晶相、形貌、微观结构。研究表明,Li_3VO_4均匀地包覆在Li Ni0.8Co0.1Mn0.1O_2表面,未改变原材料的材料结构和形貌,包覆层厚度为1~2 nm。不同含量的Li_3VO_4对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料进行修饰研究表明,3%(质量)Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2在1 C下100次循环后容量保持率为94.13%,具有最佳的倍率性能和循环性能。此外,循环伏安(CV)和交流阻抗(EIS)分析表明,Li_3VO_4能提高Li+电导率,抑制活性材料与电解液之间的副反应,提高材料的电化学性能。  相似文献   

17.
通过高温缩合反应合成了三聚磷酸铁(Fe H2P3O10·2H2O),采用扫描电镜(SEM)和X射线衍射(XRD)进行了表征,初步研究了其防锈性能,以及作为前驱体所合成的三聚磷酸铁锂正极材料的比容量和库伦效率。结果表明,所合成的三聚磷酸铁颗粒为类球形,粒径约0.5~1μm,防锈性能略优于三聚磷酸铝。三聚磷酸铁锂的比容量为210m Ah·g-1,明显高于磷酸铁锂的理论比容量(170m Ah·g-1),库伦效率接近100%,充放电可逆性好。该材料具有优良的防锈性能和电化学性能,具有很好的潜在应用前景。  相似文献   

18.
通过采用共沉淀法制备了Ni0.8Co0.1Mn0.1(OH)2前驱体,利用固相法研磨混合碳酸锰和碳酸锂,在氧气氛围下煅烧制备得到了Li2MnO3-LiNi0.8Co0.1Mn0.1O2复合材料,通过利用X射线衍射(XRD)、场发射扫描电镜(FESEM)和透射电镜(TEM)表征了所制备材料的结构、成分和形貌等。通过恒流充放电、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与未改性材料进行对比,3%(质量分数)Li2MnO3复合改性材料0.5C下首次放电容量为183 mA·h/g,经过120次充放电循环,容量保持率为93.9%;同时,在高倍率下复合改性材料放电容量也得到提高。因此,采用固相法煅烧复合Li2MnO3-LiNi0.8Co0.1Mn0.1O2材料,可以制备出电化学性能优异的正极材料。  相似文献   

19.
介绍了一种采用前驱体碳酸盐共沉淀法制备锂离子电池正极材料Li[Ni1/2Mn1/2]O2的工艺路线。通过对样品进行X射线衍射(XRD)测试,可知产品具有类似钴酸锂的层状结构。通过对产品进行扫描电镜(SEM)观察可以看出,产品具有规则的球形形貌,且粒径在5~10μm;电化学测试表明,材料的首次放电比容量大于170 mA.h/g,循环20次后容量保持率大于98%。  相似文献   

20.
以不同预氧化方式制备的前驱体合成了锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(LNCAO)。采用扫描电子显微镜、X射线衍射和化学滴定对样品及其前驱体的形貌、晶相结构和Ni的平均氧化态进行表征,并采用恒电流充放电方法对样品进行充放电性能测试。结果表明:预氧化方式不影响前驱体或样品的形貌,但对晶相结构、Ni的平均氧化态及样品的电化学性能有很大的影响,且前驱体中Ni的平均氧化态越高,相应样品的电化学性能越好。其中,“液-液预氧化”方式制备的前驱体为Ni0.8Co0.15Al0.05OOH,Ni的平均氧化态为+3.000;该前驱体在氧气气氛下750℃焙烧10 h得到的LNCAO正极材料,阳离子混排程度最小,结构最有序,Ni的平均氧化态最高,电化学性能最好;在2.8~4.3 V(vs.Li/Li+)电压,0.2C倍率时的首次放电比容量达192.1 m A·h/g,循环50次后容量保持率为94.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号