首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquid refrigerant injection technique can be a very effective method for controlling subcooling and the compressor discharge temperature of a refrigeration system at high ambient temperatures. In this study, the effects of liquid refrigerant injection on the performance of a refrigeration system with an accumulator heat exchanger were investigated by varying the liquid injection rate at the conditions of constant expansion valve opening in the evaporator and constant total flow rate. During the tests, the ambient temperature was maintained at 43 °C. With the increase of the liquid injection rate, the subcooling at the inner heat exchanger outlet increased and the superheat at the accumulator outlet decreased. However, unacceptable results such as the increase of the compressor discharge pressure and decrease of the system performance were also observed depending on the control method applied. To obtain high system performance and reliability, optimum control methods for liquid injection in the accumulator heat exchanger are suggested. The liquid injection technique for the refrigeration system with an accumulator heat exchanger was found to be an effective method for controlling adequate subcooling and the compressor discharge temperature of the refrigeration system at high ambient temperatures.  相似文献   

2.
Chilled foods are stored for periods of between a few hours and many days in domestic refrigerators. However, there are little published data on the temperature performance of domestic refrigerators within the home. A survey has been taken in 252 households in the UK and some of the results are presented in this paper. The refrigerators investigated in the survey were found to have an overall mean temperature of approximately 6°C, which ranged from 11.4 to −0.9°C. Temperature ranges over the whole refrigerator varied from 4.5 to 30.5°C with 3.7% of the total being warmer than 20°C. On average 29.9% of refrigerators operated below 5°C and 66.7% operated below 7°C. Few refrigerators (7.3%) ran, on average, above 9°C. No refrigerator characteristic (apart from type) could be related to temperatures or temperature distribution in the refrigerators investigated.  相似文献   

3.
CO2 is environmentally friendly, safe and more suitable to ejector refrigeration cycle than to vapor compression cycle. Supersonic two-phase flow of CO2 in the diverging sections of rectangular converging–diverging nozzles was investigated. The divergence angles with significant variation of decompression were 0.076°, 0.153°, 0.306° and 0.612°. This paper presents experimental decompression phenomena which can be used in designing nozzles and an assessment of Isentropic Homogeneous Equilibrium (IHE). Inlet conditions around 6–9 MPa, 20–37 °C were used to resemble ejector nozzles of coolers and heat pumps. For inlet temperature around 37 °C, throat decompression boiling from the saturated liquid line, supersonic decompression and IHE solution were obtained for the two large divergence angles. For divergence angles larger than 0.306°, decompression curves for inlet temperature above 35 °C approached IHE curves. For divergence angles smaller than 0.306° or for nozzles with inlet temperature below 35 °C, IHE had no solution.  相似文献   

4.
A steady state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump for simultaneous heating and cooling. The simulated results are found to be in reasonable agreement with experimental results reported in the literature. Such a system is suitable, for example, in dairy plants where simultaneous cooling at 4 °C and heating at 73 °C are required. The optimal COP was found to be a function of the compressor speed, the coolant inlet temperature to the evaporator and inlet temperature of the fluid to be heated in the gas cooler and compressor discharge pressure. An optimizing study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on the heat exchanger area has been carried out. Effect of heat transfer in the heat exchangers on system performance has been presented as well. Finally, a novel nomogram has been developed and it is expected to offer useful guidelines for system design and its optimisation.  相似文献   

5.
A novel silica gel–water adsorption chiller is designed and its performance is predicted in this work. This adsorption chiller includes three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber as the evaporator. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute an adsorption/desorption unit. The evaporators of two adsorption/desorption units are combined together by a heat-pipe heat exchanger to make continuous refrigerating capacity. In this chiller, a vacuum valve is installed between the two adsorption/desorption vacuum chambers to increase its performance especially when the chiller is driven by a low temperature heat source. The operating reliability of the chiller rises greatly because of using fewer valves. Furthermore, the performance of the chiller is predicted. The simulated results show that the refrigerating capacity is more than 10 kW under a typical working condition with hot water temperature of 85 °C, the cooling water temperature of 31 °C and the chilled water inlet temperature of 15 °C. The COP exceeds 0.5 even under a heat source temperature of 65 °C.  相似文献   

6.
This study presents a first-principles mathematical model developed to investigate the thermal behavior of a plate-type, roll-bond evaporator. The refrigerated cabinet was also taken into account in order to supply the proper boundary conditions to the evaporator model. The mathematical model was based on the mass, momentum and energy conservation principles applied to each of the following domains: (i) refrigerant flow through the evaporator channels; (ii) heat diffusion in the evaporator plate; and (iii) heat transmission to the refrigerated cabinet. Empirical correlations were also required to estimate the shear stresses, and the internal and external heat transfer rates. The governing partial differential equations were discretized through the finite-volume approach and the resulting set of algebraic equations was solved by successive iterations. Validation of the model against experimental steady-state data showed a reasonable level of agreement: the cabinet air temperature and the evaporator cooling capacity were predicted within error bands of ±1.5 °C and ±6%, respectively.  相似文献   

7.
An adsorptive solar refrigerator was built and tested in May 1999 in Ouagadougou, Burkina-Faso. The adsorption pair is activated carbon + methanol. The adsorber is also the solar collector (2 m2, single glazed), the condenser is air-cooled (natural convection) and the evaporator contains 40 l of water that can freeze into ice. This amount of ice acts as a cold storage for the cold cabinet (available volume of 440 l). Elements such as valves and a graduated bottle are installed, but only for experimental purposes. Apart from these valves, and also ventilation dampers which are open at night time and closed at daytime, the machine does not contain any moving parts and does not consume any mechanical energy. Within the requirement of vacuum technology, the machine is relatively easy to manufacture, so that construction in Burkina-Faso is feasible. Experimental performance is presented in terms of gross solar COP. During the test period, irradiance were quite good (between 19 and 25 MJ m−2), but the ambient temperature was relatively warm (averagely 27.4 °C at sunrise and 37.4 °C at mid-afternoon). The experimental values of the gross solar COP lie between 0.09 and 0.13. Despite a warm climate, the performance of the machine compares favourably to previously published results.

Résumé

An adsorptive solar refrigerator was built and tested in May 1999 in Ouagadougou, Burkina-Faso. The adsorption pair is activated carbon + methanol. The adsorber is also the solar collector (2 m2, single glazed), the condenser is air-cooled (natural convection) and the evaporator contains 40 l of water that can freeze into ice. This amount of ice acts as a cold storage for the cold cabinet (available volume of 440 l). Elements such as valves and a graduated bottle are installed, but only for experimental purposes. Apart from these valves, and also ventilation dampers which are open at night time and closed at daytime, the machine does not contain any moving parts and does not consume any mechanical energy. Within the requirement of vacuum technology, the machine is relatively easy to manufacture, so that construction in Burkina-Faso is feasible. Experimental performance is presented in terms of gross solar COP. During the test period, irradiance were quite good (between 19 and 25 MJ m−2), but the ambient temperature was relatively warm (averagely 27.4 °C at sunrise and 37.4 °C at mid-afternoon). The experimental values of the gross solar COP lie between 0.09 and 0.13. Despite a warm climate, the performance of the machine compares favourably to previously published results.  相似文献   

8.
We experimentally show that for the same heat exchanger inventory allocation, a four-bed adsorption chiller delivers a 12% higher ultimate cooling capacity than its two-bed counterpart. In addition it delivers a significantly improved quality of instantaneous cooling than a two-bed chiller at the same cooling capacity. The COP-enhancing feature of a passive heat recovery scheme that does not involve additional pumping action or valves is experimentally proven. It improves the COPs of a two-bed chiller and a four-bed chiller by as much as 38 and 25%, respectively, without any effect on their cooling capacities. The highest COPs achieved with a two-bed and four-bed chillers are 0.46±0.02 and 0.45±0.02, respectively. These are measured at a hot-water inlet temperature of 85 °C, cooling-water inlet temperature of 29.4 °C and chilled-water inlet temperature of 12.2 °C.  相似文献   

9.
Sensitivity analysis can be used to identify important model parameters, in particular, normalized sensitivity coefficients; by allowing a one-on-one comparison. Regarding design of evaporative coolers, the sensitivity analysis shows that all sensitivities are unaffected by varying the mass flow ratio and that outlet process fluid temperature is the most important factor. In rating evaporative coolers, effectiveness is found to be most sensitive to the process fluid flow rate. Also, the process fluid outlet temperature is most sensitive to the process fluid inlet temperature. For evaporative condensers, the normalized sensitivity coefficient values indicate that the condensing temperature is the most sensitive parameter and that these are not affected by the value of the mass flow ratio. For evaporative condenser design, it was seen that, for a 53% increase in the inlet relative humidity, the normalized sensitivity of the surface area increased 1.8 times in value and, for a 15 °C increase in the condenser temperature, the sensitivity increased by 3.5 times. The performance study of evaporative condensers show that, for a 72% increase in the inlet relative humidity, the normalized sensitivity coefficient for effectiveness increased 2.4 times and, for a 15 °C increase in the condenser temperature, it doubled in value.  相似文献   

10.
A survey was carried out in France from April to June 1999. Temperatures were recorded at three levels (top, middle and bottom) of the refrigerator compartment using a data logger. A questionnaire was filled in, enabling the following information to be obtained: characteristics of the family, characteristics of the refrigerator and the use conditions. One hundred and forty-three domestic refrigerators were surveyed, but due to various technical problems, only 119 sets of recorded temperatures were exploitable. The temperatures of the surveyed refrigerators were: average 6.6 °C, minimum 0.9 °C and maximum 11.4 °C. Statistical analysis such as clustering and segmentation were used. It was found that the heterogeneousness of temperature inside each refrigerator seems to be dependent on the type. This study shows the influence of the use conditions on the temperature. No one factor exerts a single direct effect; a combination of the effects of all factors is observed.  相似文献   

11.
The paper provides the results of a theoretical and experimental study of a steam jet refrigerator. A small-capacity steam jet refrigerator has been tested with boiler temperatures in the range 120–140°C. The experimental data were found to be within 85% of the theoretical values. The experiments showed that choking of the secondary flow in the mixing chamber of the ejector plays an important role in the system performance. Maximum COP was obtained when the ejector was operated at its critical flow condition. Off-design performance characteristics of the system are provided.  相似文献   

12.
This paper reports experimental results of an on/off cycling domestic refrigerator at varied expansion device capacity (EDC), quantity of charge and ambient temperature. It was found that the energy consumption is insensitive to varied EDC and charge within a wide range of settings. For the charge this is explained by the low side accumulator, which buffers over- and undercharge. It was also found that the optimum charge increased at lower ambient temperature. The paper describes an experimental procedure on how to determine the capillary tube length and the quantity of charge for a domestic refrigerator/freezer. This procedure is recommended since it takes different thermal masses and loads into consideration and since the potential for energy saving with a more sophisticated method appears to be limited.  相似文献   

13.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

14.
The performance of a thermoacoustic refrigerator subjected to variable loading was analyzed experimentally and the data were compared with those obtained using a computational model. The computational model relies on one-dimensional cross-section-averaged equations discretized using the network analogy. The thermoacoustic refrigerator was modeled by dividing it into 1 mm long slices in the direction of the acoustic axis. The hot heat exchanger of the thermoacoustic refrigerator was maintained at ambient temperature and the temperature of the cold heat exchanger was varied to achieve temperature differences of ΔT=0, 5 and 10 K along the stack. The cooling load was measured and calculated for these temperature differences while varying the driving frequency between 30 and 65 Hz. The contribution of the progressive and stationary waves and the losses on the thermoacoustic heat flow was computed and discussed.  相似文献   

15.
This paper presented a novel autocascade refrigeration cycle (NARC) with an ejector. In the NARC, the ejector is used to recover some available work to increase the compressor suction pressure. The NARC enables the compressor to operate at lower pressure ratio, which in turn improves the cycle performance. Theoretical computation model based on the constant pressure-mixing model for the ejector is used to perform a thermodynamic cycle analysis for the NARC with the refrigerant mixture of R23/R134a. The effects of some main parameters on cycle performance were investigated. The results show the NARC has an outstanding merit in decreasing the pressure ratio of compressor as well as increasing the COP. For NARC operated at the condenser outlet temperature of 40 °C, the evaporator inlet temperature of −40.3 °C, and the mass fraction of R23 is 0.15, the pressure ratio of the ejector reaches to 1.35, the pressure ratio of compressor is reduced by 25.8% and the COP is improved by 19.1% over the conventional autocascade refrigeration cycle.  相似文献   

16.
The capillary tube is often served as an expansion device in small refrigeration and air-conditioning systems. In this paper, a generalized correlation for predicting the refrigerant mass flow rate through the adiabatic capillary tube is developed with approximate analytic solutions based on the extensive data for R12, R22, R134a, R290, R600a, R410A, R407C, and R404A, in which a homogeneous equilibrium model for two-phase flow is employed, and there is a subcooled liquid or saturated two-phase mixture at the inlet of the capillary tubes. The collected database about capillary tubes covers the inner diameter from 0.5 mm to 2 mm, the tube length from 0.5 m to 5 m, the condensing temperature from 20 °C to 60 °C, the subcooling from 0 °C to 20 °C, and the quality from 0 to 0.3 at the inlet. Assessments for the correlation are made with some experimental data for R12, R22, R134a, R290, R407C, R410A, and R404A obtained from the open literature and some existing correlations based on the experimental database also. The present correlation yields an average deviation of −0.83% and a standard deviation of 9.02% from the database.  相似文献   

17.
This paper presents a steady-state model for predicting the performance of vapour-compression liquid chillers over a wide range of operating conditions. The model overcomes the idealisations of previous models with regard to modelling the heat exchangers. In particular, it employs an elemental NTU- methodology to model both the shell-and-tube condenser and evaporator. The approach allows the change in heat transfer coefficients throughout the heat exchangers to be accounted for, thereby improving both physical realism and the accuracy of the simulation model. The model requires only those inputs that are readily available to the user (e.g. condenser inlet water temperature and evaporator water outlet temperature). The outputs of the model include system performance variables such as the compressor electrical work input and the coefficient of performance (COP) as well as states of the refrigerant throughout the refrigeration cycle. The methodology employed within the model also allows the performance of chillers using refrigerant mixtures to be modelled. The model is validated with data from one single screw chiller and one twin-screw chiller where the agreement is found to be within ±10%.  相似文献   

18.
The effect of air inlet humidity condition on the air-side heat transfer and pressure drop characteristics for an inclined brazed aluminum heat exchanger has been investigated experimentally. For a heat exchanger with a louver angle of 27°, fin pitch of 2.1 mm and flow depth of 27.9 mm, a series of tests are conducted for the air-side Reynolds numbers of 80–400, with variation of inlet humidity condition. The heat transfer data are obtained for wet condition only and the pressure drop data are measured for both dry and wet conditions. The inlet air temperature and relative humidity range are 12 °C and 60–90%, respectively. The inclination angles (θ) from the vertical position are 0, 14, 45, and 67° clockwise (leeward direction). The inclination angles affect moderately the sensible heat transfer coefficient for wet condition, and the pressure drops for both dry and wet conditions increase systematically with the inclination angle. The heat transfer and pressure drop characteristics under wet condition are not influenced substantially by the air inlet humidity for θ 45°. The effect of the louver directions at the inlet and outlet of the inclined heat exchanger on the performance is also addressed.  相似文献   

19.
Jet-refrigeration cycles seem to provide an interesting solution to the increasing interest in environment protection and the need for energy saving due to their low plant costs, reliability and possibility to use water as operating fluid. A steam/steam ejector cycle refrigerator is investigated introducing a two-stage ejector with annular primary at the second stage. The steady_state refrigerator, exchanging heat with the water streams at inlet fixed temperatures at the three shell and tube heat exchangers, evaporator, condenser and generator, is considered as an open system. Heat transfer irreversibilities in the heat exchangers and external friction losses in the water streams are considered, ignoring the internal pressure drop of the vapor. A simulation program numerically searches the maximum COP at given external inlet fluid temperatures as a function of mass flows, dimensions and temperature differences in the heat exchangers. The code gives the ejector and heat exchangers design parameters.  相似文献   

20.
In 1984 international research took place which compared the transport conditions of quick-frozen foods in thin-wall vehicles and conventional vehicles. This work was done at the request of the group of experts of the UNECE/TRANS/GE.11 in Geneva, Switzerland. In the Netherlands measurements have been carried out on three road vehicles — one conventional and two thin-wall vehicles — in the test station and on the road. The road transport involved taking a commercial cargo of frozen fish from Holland to Italy during the summer (July). Later on an additional test was performed in the test station with a fourth thin-wall vehicle at an ambient temperature of 30°C. The results show, that in the conventional vehicle, equipped with a bulk head and a ceiling air duct, and working on a temperature setting of −25°C, a maximum product temperature of −18°C could be maintained. The maximum temperature difference in the cargo was 6 K. Thin-wall vehicles appeared to have a temperature difference of 12 K between air inlet temperature and warmest product temperature. The maximum product temperature could be held below −12, −15 or −20°C, depending on the air distribution and, in particular, on the cooling power of the thermal appliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号