首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of CaO content in the range from 0 to 4.0%, and sintering temperature on the phase composition, relative density and electrical conductivity of 10NiO-NiFe2O4 composites doped with CaO were studied. The results show that there is no change of structure for NiO or NiFe2O4; there is apparent oxygen absorbing and releasing behavior during the heating process in air for 10NiO-NiFe2O4 composites. Introduction of CaO can accelerate the densification of 10NiO-NiFe2O4 composites. The maximum value of relative density is 98.75% for composite doped with 2.0% CaO and sintered at 1 200 ℃, which is beyond about 20% for the undoped composites. The sintering activated energy of sample containing 2% CaO decreases by 15.87 kJ/mol, compared with that of the undoped sample.  相似文献   

2.
CaSO4 whisker reinforcing and toughening mechanisms for polyurethane elastomer were studied.The effects of dispersity of CaSO4 whisker and interfacial bonding state on reinforcement and toughness were discussed.The microanalyses showed that CaSO4 whisker reinforcing mechanism for polyurethane elastomer mainly was load transferring and its toughening mechanism involved crack deflection and whisker pullout.The results indicated that composites with 5%-10% CaSO4 whisker exhibited the best mechancal properties,Good bonding in terface was formed between whisker and matrix after the surface of CaSO4 whisker was treated by silane coupling agent.The fairly improved strength and toughness are attributed to the better interfacial bonding state.  相似文献   

3.
Lead zirconate titanate ( PZT ) / polyvinylidene fluoride (PVDF) 0-3 piezoelectric composites doped with polyaniline (PANI) were obtained by hot-press method. The polarization properties of the composites were characterized by XRD and P- E hysteresis loops at room temperature. And the dielectric and piezoelectric properties were also measured. The results show that the poling of PZT could be effectively carried oat and the dielectric constant e, and dissipation tanδ increase monatonously by increasing the volume fraction of PANI in the composite. The piezoelectric constant d33, and the planar electromechanical coupling factor kp increase while the mechanical quality factor Qm decreases with the increase in the content of PANI. The d33, kp and Qm show the extremum values at 8 vol%-10 vol% PANI.  相似文献   

4.
Urea-isobutyraldehyde-formaldehyde (UIF) resin was synthesized from urea, isobutyraldehyde, and formaldehyde using sulfuric acid as a catalyst by one pot method. The effects of molar ratios of isobutyraldehyde to formaldehyde (n(I)/n(F)) and aldehyde to urea (n(A)/n(U)) on the yield, hydroxyl value (vs KOH) and softening point of the resin were investigated. The structure of the resin was characterized by FT-IR, 1H-NMR and 13C-NMR. The results show that when the molar ratio of urea to isobutyraldehyde to formaldehyde (n(U)/n(I)/n(F)) is 1.0/3.0/3.0, the yield UIF resin is 67.1%, and the softening point and hydroxyl value are 88 °C and 37 mg/g, respectively. The FT-IR, 1H-NMR and 13C-NMR results show that the lactam is formed by aminomethylation from urea, isobutyraldehyde, and formaldehyde. Foundation item: Project(2006A10902001) supported by the Science and Technology Plan of Guangdong Province, China; Project(2007Z3-D0351) supported by the Science and Technology Plan of Guangzhou City, China  相似文献   

5.
TiAl/Ti2AlC composites were prepared by in-situ hot pressing of TilAl/C powders mixtures and sintered at different temperatures were investigated by X- ray diffraction ( XRD ) of samples. The reaction procedure of Ti-Al-C system could be divided into three stnges. Below 900℃ , Ti reacts with Al to form TiAl intermetallics ; above 900 ℃ , C reacts with remain Ti to form TiC triggered by the exothermal reaction of Ti and Al ; TiAl reacts with TiC to produce dense TiAl/Ti2AlC compasites.In the holding stage, ternary Ti2AlC develops to layered polycrystal and composites pyknosis in the meanwhile. The mechanism of synthesis and microstructure was especially discussed.  相似文献   

6.
Solubility of Nb2O5 and leaching behaviors of Nb and Ta from niobite in KOH solution have been investigated in order to develop an alkali hydrothermal leaching process of Nb and Ta. The solubility of Nb2O5 was measured in the range of 40 °C to 200 °C at various molar ratios of K2O to Nb2O5(n(K2O)/n(Nb2O5)). It has been found that Nb2O5 shows the maximum solubility at the solution composition of n(K2O)/n(Nb2O5)=4/3 at a given temperature; the rise of temperature increases the solubility of Nb2O5 below 120 °C, but decreases it above 120 °C. The leaching behaviors of Nb and Ta were studied in the range of 150 °C to 250 °C and 0.1 MPa to 5 MPa. With the rise of temperature, the leaching degree increases when the leaching temperature is below 200 °C, but it decreases when the leaching temperature is above 200 °C. The maximum leaching degree is about 90% at 200 °C. It was proved that the alkali hydrothermal leaching process is effective for the recovery of Nb and Ta from niobite concentrate. Foundation item: The Key Project of Science and Technology Agency of Japan, 1994 Biography of the first author: ZHOU Kang-gen, doctor of engineering, professor, born in 1963, majoring in extractive metallurgy of rare metals and application of membrane separation technology.  相似文献   

7.
Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cf(α-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 °C on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 °C) to 1 000 °C. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000 °C, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 °C as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.  相似文献   

8.
The nanocomplex oxides of Sn-In and Sn-In-Ti were prepared by controlled co-precipitation method as sensing materials of semiconductor gas sensors for detection of CO, CH4 and NO2. Through manipulating the Sn/In cation ratio, metal salt total concentration, precipitation pH value and aging time, the nanocrystalline powders were successfully derived with chemical homogeneity and superior thermal stability, compared with the single component oxides. The particle size and morphology, surface area, and thermal and phase stabilities were characterized using TEM, TG-DTA, BET and XRD. The sensing tests showed that the Sn-In composites exhibit high sensitivity and selectivity for CO and NO2. The introduction of TiO2 enhanced CH4 sensitivity and selectivity, particularly, additives of Pd and Al2O3 as a dopant and surface modification greatly enhanced the sensing properties. The sensitivity depended on the composition of composites, calcination temperature and operating temperature. The optimal values were (25%In2O3- 75%SnO2)-20%TiO2 for ternary composite, 600 and 300℃, respectively. Temperature-programmed desorption (TPD) studies were employed to explain the gas adsorption behavior displayed by the surface of nanocomposites and X-ray photoelectron spectroscopic (XPS) analysis was used to confirm the electronic interactions existing between oxide components. The sensing mechanism of the nanocomposites was attributed to chemical and electronic synergistic effects.  相似文献   

9.
In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(H2O)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.  相似文献   

10.
Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investiga-ted. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38O/6o to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS,which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0:3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202. 8 MPa and 124. 2 MPa, respectively. The microstructure and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.  相似文献   

11.
The novel sandwich composites were prepared by sandwiching a polyvinylidene fluoride/Tb- Dy-Fe alloy composite (PVDF/Terfenol-D) between polyvinylidene fluoride/lead zirconate titanate composites (PVDF/PZT). The maximum magnetoelectric effect voltage coefficient, (dE/dn)33max, of the sandwich composites is higher than that of three-phase composites at their own optimal loading level of Terfenol-D. This is attributed to less interface relaxations of strain and better polarization of the sandwich composites. When the volume fraction of Terfenol-D is higher than 0.10, no coupling interaction for three-phase composites could be observed, but (dE/dn)33max of sandwiched composites still reached 20 mV/(cm.Oe). At high magnetic field intensity, the magnetoelectric effect voltage coefficient, (dE/dn)33, of sandwich composites is higher than that of three-phase composites; at low magnetic field intensity, (dE/dn)33 of sandwich composites is lower than that of three-phase composites. At their resonance frequency, the (dE/dn)33max of the sandwich composites and the three phase composites are 150 mV/(cm.Oe) and 42 mV/(cmoOe), respectively. This significant increase of (dE/ dn)33max at resonance frequency confirms the improvement of maximum magnetoelectric effect coefficient via sandwich-structured composites.  相似文献   

12.
The composition, microstructures and properties of SiC/Al2O3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO2 and SiC were investigated. The composition of the composites was measured by X-ray diffraction ( XRD ). The microstructures of the composites were also measured by scanning electron microscopy (SEM) and optical microscopy. In addition, the factors affecting the properties of the composites were discussed. The experiments show that the mechanical properties of the composites depend on their relative densities and the sizes of the fillers“ SiC gains“. The denser the SiC/Al2O3/Al-Si composites, the higher their bending strength. As the filler “SiC gains“ become fine, the bending strength of the composites increases.  相似文献   

13.
Chromium ore fines containing coal (COFCC) can be rapidly heated by microwave to conduct the voluminal reduction, which lays a foundation of getting sponge ferrochromium powders with a lower content of C. Under the conditions of COFCC with n(O):n(C) (molar ratio) as 1.00:0.84 and n(SiO2):n(CaO) as 1.00:0.39, the samples were heated by 10 kW microwave power to reach the given temperatures and held for different times respectively. The results show that the low-C-Cr ferrochromium metal phase in the reduced materials forms before the high-C-Cr ferrochromium metal phase does. With increasing temperature the C content of ferrochromium metals is in a positive correlation with the content of Cr. The C content of ferrochromium metal in reduced materials is 0–10.07% with an average value of 4.68%. With the increase of holding time the Cr content in ferrochromium metals is in a negative correlation with the content of C, while the content of Fe changes in the contrary way. In the microwave field the kinetic conditions of carburization are closely related with the temperature of microwave heating, holding time and carbon fitting ratio. Foundation item: Project(50474083) supported by the National Natural Science Foundation of China; Project supported by the Baoshan Iron & Steel Co. Ltd. of China  相似文献   

14.
An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia p(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous p(TP) is 6.0 -9.0 mg/L in influent, the system still ensures ρ(COD)〈23 mg/L, ρ(NH3-N)〈3.2 mg/L and ρ(TP)〈0. 72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91 %. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.  相似文献   

15.
Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanometer magnetic material was fabricated through rapid solidification, crystallization and nitridation of Sm-Fe (Ti) alloy. The effect of combination of rapid solidification and Ti alloy addition on the phase formation and microstructure of the Sm-Fe alloy is investigated in this paper. The microstructure of amorphous phase and dual-phase nano-grain crystals before and after crystallization annealing were observed using a high-resolution transmission electron microscope (HREM). The dual-phase nano-grains after annealing were compacted together with a clear interface with the direct exchange-coupling mechanism. Different annealing processes were used to examine the melt-spun alloy. Comparison of the images of SEM showed that annealing at 750℃ for 10 min was most suitable to get homogeneous and nano-grains. No obvious kink was detected in the second quadrant of the hysteresis loop like a single hard magnet, and strong exchange coupling was found between hard magnets and soft magnets.  相似文献   

16.
Electrical impedance measurements wereperformed on fine-grained concrete with low,volume con-tent of conductive steel and carbon fibres,either as a monoor as a hybrid system.The influences were investhated ofthe applied frequencies,of fibre combinations and of theage of the composites on the impedance.the results showthat when the applied frequency is increased from 0. 98Hzto 1000Hz,the impedance of the fibre composites significantly decreases.At the same time,impedance differencebetween plain concrete and fibre-reinforced concrete is en-hanced.Dramatic drop of impedance takes phace over thelow,frequency range,i.e.0. 98~31Hz.Impedance alsodepends on the volume content of hybrid fibres.The cemen-titous composite with the highest content of hybrid fibres(1. 0% steel fibres and 0. 2% carbon firbres by volume)has the lowest impedance at all measuring frequencics.0.6% fribres by volume seem to be a turming point,fromwhich the variation of impedance slows down with the fibre content increases.On the other han  相似文献   

17.
Electric contact material of Ag/SnO2 was successfully synthesized by in situ process method. The interface structure was characterized by high-resolution transmission electron microscopy (HTEM) and simulated at atomic scale on computer. The mean-square displacements of atoms near the interface were calculated, and the results showed that near the interface both Ag side and SnO2 were mismatched and this effect decays rapidly far from the interface. By inspecting the calculated density of states (DOS), we found that the electric-conductivity of this composite material was decreased because of the localized 4d and 2p electrons of Ag and O near the Fermi surface, respectively. Electron density changed acutely across the interface, so that there was no extra compound precipitated. A micro-electric field also formed in the whole material due to the interface structure, and this may affect the electron conduction and the related electric-conductivity of the composite. It is found that the interface cohesive energy of Ag (111)/SnO2 (200) was −3.50 J/m2, which is higher than the experimental results. Supported by the National Natural Science Foundation of China (Grant No. 2008CB617609), the Natural Science Foundation of Yunnan Province (Grant No. 2006E003Z) and Science Innovation Foundation of Kunming University of Science and Technology  相似文献   

18.
Some properties of nano SiO2 modified PVF adhesive were studied .the experimental results show that nano SiO2 can inprope the properties of PVF adhesive very well.Meanwhile the modification mechanism of nano SiO2 to PVF adhesire and the applications of this adhesire in paper-plastic composite ,conctete and fireproof paint were discussed by using IR and XRD determination.  相似文献   

19.
Based on the microscopic phase-field dynamic model and the microelasticity theory, the coarsening behavior of L12 and DO22 phases in Ni75Cr x Al25−x alloy was simulated. The results show that the initial irregular shaped, randomly distributed L12 and DO22 phases are gradually transformed into cuboidal shape with round corner, regularly aligned along directions [100] and [001], and highly preferential selected microstructure is formed during the later stage of precipitation. The elastic field produced by the lattice mismatch between the coherent precipitates and the matrix has a strong influence on the coarsening kinetics, and there is no linear relationship between the cube of the average size of precipitates and the aging time, which does not agree with the results predicted by the classical Lifshitz-Slyozov-Wagner. The coarsening processes of L12 and DO22 phases are retarded in elastically constrained system. In the concurrent system of L12 and DO22 phases, there are two types of coarsening modes: the migration of antiphase domain boundaries and the interphase Ostwald ripening. Foundation item: Project(50671084) supported by the National Natural Science Foundation of China; Project(20070420218) supported by China Postdoctoral Science Foundation  相似文献   

20.
Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3/Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubricant, comparing with that of AISI1045 steel and brush electroplated Ni coating. Effects of testing load, sand content and sand size on worn volume of the three materials, and also coating surface roughness on worn volume of the brush electroplated coatings were accessed. Results show that the worn volume of all the three materials increases with increasing of testing load, sand content and sand size. In the same conditions, n-Al2O3/Ni composite coating has the smallest worn volume while AISI1045 steel has the largest because of the n-Al2O3 particle effects. As to n-Al2O3/Ni and Ni coatings, the surface-polished coatings have obviously lower worn volume than the as-plated coatings. The brush electroplated n-Al2O3/Ni composite coating was employed to remanufacture the sand-worn bearing seats of a heavy vehicle and good results were gained. Foundation item: Project (50235030) supported by the National Natural Science Foundation of China; Project (51489020104ZD0401) supported by the National Key Laboratory for Remanufacturing; Project(51418060105JB3058) supported by National Defence Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号