首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
机械合金化过程中Fe50Al50二元系的结构演变   总被引:1,自引:0,他引:1  
利用高能球磨和后续热处理技术制备纳米晶Fe50Al50(摩尔分数,%)合金粉体.采用X射线衍射、透射电镜和扫描电镜对元素混合粉在机械合金化过程中的结构演变及热处理对合金化粉体结构的影响等进行分析,讨论其机械合金化合成机制.结果表明:球磨过程中Al向Fe中扩散,形成Fe(Al)固溶体.机械合金化合成Fe(Al)遵循连续扩散混合机制;球磨30 h后,粉体主要由纳米晶Fe(Al)构成,晶粒尺寸5.65 nm;热处理导致Fe(Al)纳米晶粉体有序度提高,转变为有序的B2型FeAl金属间化合物,粉体的晶粒尺寸增大,但仍在纳米尺度范围.  相似文献   

2.
本文利用XRD、SEM、DSC等手段研究了Fe-Cu-Al粉末体系机械合金化(MA)过程金属粉体的结构变化及储能情况.将机械合金化处理后的粉末进行热压烧结,并对烧结体进行了金相组织、硬度和抗折强度分析.结果表明,Fe-Cu-Al经MA处理能够形成二元及三元固溶体,粉体粒度和晶粒度明显细化,粉体内储存了大量的表面能和界面能.球磨20 h晶粒度达到稳定值20 nm,粉体储能达到最大值385.1 J/g,球磨30 h粉体粒度达到稳定状态.随着球磨时间的延长,粉末烧结体的成分趋于均匀,组织不断细化.粉末烧结体的硬度在球磨初期显著提高,超过10 h后硬度提高缓慢,而烧结体的抗折强度随着球磨时间的延长几乎成线性增长.球磨50 h粉末烧结体的洛氏硬度和抗折强度分别达到108 HRB和351 MPa.  相似文献   

3.
利用高能球磨和后续热处理技术制备纳米晶Fe5A150(摩尔分数,%)合金粉体。采用X射线衍射、透射电镜和扫描电镜对元素混合粉在机械合金化过程中的结构演变及热处理对合金化粉体结构的影响等进行分析,讨论其机械合金化合成机制。结果表明:球磨过程中Al向Fe中扩散,形成Fe(A1)固溶体。机械合金化合成Fe(Al)遵循连续扩散混合机制;球磨30h后,粉体主要由纳米晶Fe(A1)构成,晶粒尺寸5.65nm;热处理导致Fe(A1)纳米晶粉体有序度提高,转变为有序的B2型FeAl金属间化合物,粉体的晶粒尺寸增大,但仍在纳米尺度范围。  相似文献   

4.
采用高能球磨的机械合金化法合成Sn-Cu二元合金超细粉体,对在球磨过程中粉体的结构演变、颗粒形貌、粒径分布及熔化特性进行了研究,讨论了合金化机制.结果表明:球磨粉体由Sn(Cu)过饱和固溶体及Cu6Sn5构成.在球磨初期,Cu、Sn颗粒相互迭加、冷焊,形成复合层块;随后,复合层块断裂碎化,球形颗粒相互团聚构成大的团粒;最后,团粒解散,小颗粒进一步细化.球磨60 h后,Sn-Cu合金粉体的平均粒径(d50)为1~3 μm,且随Cu含量由0.7 wt%增加到10 wt%,Sn-Cu合金粉颗粒形貌由不规则绒絮状变化到球状,熔点由231℃降低到288℃.  相似文献   

5.
机械合金化及热处理过程中Ti33B67二元系统的结构演变   总被引:1,自引:1,他引:0  
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及粉体粒度仪研究了Ti33B67元素混合粉在机械合金化过程中的结构演变、球磨后粉体的颗粒形态与粒度分布以及热处理对粉体结构的影响,讨论了TiB2机械合金化合成机制。实验结果表明,机械合金化合成TiB2遵循逐渐扩散反应机制,过程如下:Ti B→Ti(B)纳米晶→Ti(B)非晶→TiB2纳米晶。球磨20h析出TiB2,球磨60h后完全转变为TiB2。TiB2粉体颗粒基本呈球形,具有比较宽的粒径分布,平均粒度d0.5为0.964μm。热处理导致TiB2粉体晶粒生长,晶粒尺寸增大,品格畸变程度降低,有序度提高。  相似文献   

6.
采用机械合金化方法,以Ni、Al元素粉末为原料,对四种成分的NixAl100-x(x=25,30,40,50)进行不同球磨时间和球磨转速的机械合金化合成;并对Ni30Al70的合成产物进行热处理.研究了过饱和固溶NiAl的机械合金化合成机理.研究表明:NixAl100-x四种成分的元素粉末通过机械合金化方法均制备出纳米晶NiAl金属间化合物粉末;非化学计量配比成分的Ni-Al粉末通过机械合金化合成NiAl过饱和同溶合金,其机械合金化合成机理为含有以原子扩散为基础的强制同溶的燃烧合成反应.  相似文献   

7.
将0.075mm的Ti,Cu,Ni,Sn4种金属粉按合金成分为Ti50Cu23Ni20Sn7进行配比,并在行星式球磨机中进行机械合金化(MA)球磨。试验中的球磨机转速为300r/m,球料比为10:1。XRD和DSC分析结果表明,经过30h球磨之后,金属粉末已经全部合金化,并且为非晶态结构。继续进行球磨只能减小粉末颗粒尺寸,却会引入更多的杂质,所以30h是制备Ti50Cu23Ni20Sn7非晶合金粉末最为合适的时间。SEM下观察发现,经机械合金化所获得的非晶粉为层状团聚结构。将所制备的非晶合金粉装入碳化钨模具中,并在放电等离子烧结(SPS)设备中进行快速烧结。其烧结的温度分别为480、490、500和510℃,烧结压力为500MPa,保温时间为1min。从XRD和DSC分析结果可以看出,烧结后的合金基体为非晶结构,并伴有少量晶化相。烧结件放在光学显微镜下观察可以看到少许缩孔和疏松等烧结缺陷。将温度为490℃下烧结的试件破碎,并将断口在SEM下观察可以发现,试件断裂方式为层状脆性断裂。试验结果表明采用机械合金化和放电等离子烧结技术可以成功制备出Ti基大块金属玻璃。  相似文献   

8.
研究了机械合金化过程中Fe-Al-Ti-B四元粉体的结构演变,讨论了其合金化机制.研究表明,Fe-Al-Ti-B四元粉体的机械合金化通过Al、Ti、B原子向Fe晶格中扩散形成Fe(Al,Ti,B)过饱和固溶体.在机械合金化的早期(<10h),形成包覆结构的复合颗粒,合金化尚未进行.在机械合金化的中期(10-60h),首先形成具有几个同心圆环结构的复合颗粒,然后环状结构消失,同时Fe(Al,Ti,B)晶格常数迅速增加,但成分均匀化过程缓慢.在机械合金化的后期(60-80h),主要发生复合颗粒内部的成分均匀化过程,球磨80h后,复合颗粒内部各组元的成分已经非常均匀.Fe(Al,Ti,B)晶粒细小(6.8nm),晶格畸变严重,具有近似非晶态的结构.由于Ti、B元素的添加,Fe-Al-Ti-B四元粉体晶粒细化速率更快,但合金化速率明显降低.  相似文献   

9.
放电辅助机械合金化快速合成Ti(C,N)粉体(英文)   总被引:1,自引:0,他引:1  
利用机械合金化方法以Ti粉、石墨粉为原料,采用行星式球磨机在高纯氮气气氛下制备出Ti(C,N)粉体。研究放电处理对机械合金化1~7h试样的相变及显微组织的影响。实验结果表明:球磨1h后的样品在放电辅助下合成了Ti(C,N)粉体;而仅采用机械合金化方法,球磨7h不能合成Ti(C,N)粉体。放电处理产生的等离子体作用于粉体上,提高了原子间的扩散速度和Ti(C,N)在球磨粉体表面的形核速度,这是加速Ti(C,N)合成的主要原因。两种合成方法都遵循机械诱发自蔓延反应机制。  相似文献   

10.
使用X射线衍射仪(XRD)、透射电子显微镜(TEM)研究了Ti50C50元素混合粉在机械合金化过程中的结构演变以及热处理对粉体结构的影响,讨论了TiC机械合金化合成机制。研究结果表明,机械合金化合成TiC遵循逐渐扩散反应机制,反应首先形成纳米晶Ti(C)粉体,球磨10h析出TiC,随着球磨过程的进行,TiC的量逐渐增多,品格常数增加,晶粒尺寸降低。球磨80h后,粉体主要由纳米晶TiC构成,晶粒尺寸6nm,但仍有少量的Ti(C)剩余。热处理促进残余的Ti(C)转变成TiC,同时导致TiC粉体晶粒生长,晶粒尺寸增大,晶格畸变程度降低,有序度提高。  相似文献   

11.
利用机械合金化法制备Ni50Mn43Sn7磁性形状记忆合金粉末。采用X射线衍射(XRD)、扫描电镜(SEM)及振动样品磁强计(VSM)等分析手段研究了机械合金粉末的微观结构和磁性随球磨时间的变化。结果表明:在球磨过程中,依次形成一些Mn1.77Sn,MnSn2,Ni3Sn4,Ni3Sn2和Ni4Sn等中间相,随着球磨时间的增加,MnSn化合物与NiSn化合物逐渐结合而消失,球磨270h后,形成Ni2MnSn,机械合金化完成。在球磨初期,粉末晶粒尺寸急剧减小,球磨90h后晶粒尺寸基本保持稳定,颗粒以絮状团聚结构存在。由于球磨过程中粉末得到细化等原因,饱和磁化强度Ms随球磨时间的增加而减少,矫顽力(Hc)随球磨时间的增加先增大,球磨90h后急剧减小。  相似文献   

12.
利用OM、SEM、EDS和XRD等测试手段研究了球磨转速和球磨时间对14Cr-ODS合金粉的形貌、显微结构及物相的影响。结果表明,转速为250 r/min时,随着球磨时间的延长,粉末粒径增大,16 h时基本稳定;点阵参数增大,晶粒尺寸不断减小并趋于稳定;12 h时颗粒内部出现层状结构并不断细化直至消失,颗粒成分更接近名义成分。12 h时合金化已开始,持续球磨使合金化程度提高,30 h时基本实现合金化。合金化过程可分为包覆、粘结、分层、细化、均匀化5个阶段。当转速提高到300 r/min时,合金化进程加快。  相似文献   

13.
以MoO3粉、Mo粉、Si粉及Al粉为原料,采用机械合金化法合成了纳米Mo5Si3-20%Al2O3(质量分数)复合粉体。采用XRD、SEM、TEM和DTA等对复合粉体在球磨过程中结构变化进行了研究。结果表明:球磨10h后合成的Mo5Si3-20%Al2O3复合粉体,反应以爆炸模式进行。球磨30h后,Mo5Si3和Al2O3的晶粒尺寸分别为36.3nm和21.9nm。随着球磨时间的延长,Mo5Si3和Al2O3的晶粒尺寸变小,衍射峰宽化程度降低。DTA和XRD分析结果表明,复合粉体具有好的热稳定性,球磨30h后再在1000℃退火1h后复合粉体没有发生物相转变。  相似文献   

14.
采用机械合金化(MA)方法,选择Ti-Cu-Ni-Sn-Ta合金体系,通过高能球磨制备钛基非晶粉末。研究球磨时间对钛基混合粉末的形貌、组织结构演化和热稳定性的影响以及合金成分对非晶形成能力的影响,并对合成的粉末进行了XRD分析。结果表明,球磨时间对非晶的形成和晶粒细化有显著影响,球磨后粉末各组元呈均匀化弥散分布;成分为Ti64Cu11.2Ni9.6Sn3.2Ta12的合金具有较宽的过冷液相区,最终获得了Ti基非晶复合材料,而成分为Ti58.8Cu1.1Ni3.2Sn5Ta31.9的合金在高能球磨过程中没有发生非晶转变。  相似文献   

15.
以Fe2O3粉、Si粉和Al粉为原料,采用反应机械合金化/退火法制备出了Al2O3/Fe3Si纳米复合粉体。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合粉体球磨以及退火过程中的固态反应过程、表面形貌进行表征。研究表明,Fe2O3-Si-Al混合粉体球磨5 h后发生反应生成Al2 O3、Fe5 Si3、Fe3 Si、FeSi,球磨20 h后生成Al2 O3/Fe3 Si,球磨20 h的粉体在900℃条件下退火1 h的组成物相未发生变化,复合粉体颗粒呈球形,其尺寸为5μm左右,分布均匀,组成相Al2O3和Fe3Si的晶粒尺寸分别为26.6 nm和28.3 nm。  相似文献   

16.
采用机械合金化结合粉末冶金技术制备W-20Cu(vol%)复合材料.利用扫描电镜和金相显微镜对不同球磨时间的W-20Cu复合材料显微组织进行表征,并对材料的各项物理性能进行测试.结果表明,随着球磨时间的延长,W-20Cu烧结体的组织越来越均匀,Cu相分布也越来越均匀.W-20Cu烧结体密度、收缩率、硬度、抗弯强度随球磨时间的延长而增大;球磨20h的W-20Cu复合粉烧结体热导率达到峰值(130.61 Wm-1K-1),继续球磨,热导率减小.综合考虑所有研究结果,通过机械合金化所制备的W-Cu复合粉体可以获得具有优异综合物理性能的W-20Cu复合材料.  相似文献   

17.
采用机械合金化方法制备了掺杂稀土Er的n型赝三元(Bi_2Te_3)_(0.90)(Sb_2Te_3)_(0.05)(Sb_2Se_3)_(0.05)合金粉体,XRD分析表明,经100h球磨实现了稀土Er与赝三元晶体的合金化,通过SEM图片分析表明,球磨100h后颗粒尺寸达到5~50nm量级。使用n型赝三元掺Er合金粉体在烧结时间0.5h下制备了冷压烧结块体,在室温下测量了Seebeck系数(α)和电导率(σ),结果表明,随烧结温度的升高,Seebeck系数表现逐渐减小的趋势,电导率逐渐随烧结温度增加而增大。随着Er掺杂浓度的增加,冷压烧结样品的Seebeck系数绝对值呈先增加而后减小趋势,在掺杂浓度为0.2%(质量分数)时达到最大,约为159.6μV·K~(-1),电导率随掺杂浓度的增加逐渐变大。  相似文献   

18.
机械合金化W-Ni-Fe纳米复合粉的制备及结构研究   总被引:3,自引:1,他引:3  
W,Ni,Fe粉末按照91.16W6.56Ni2.26Fe和95W5Ni的成分配比进行了机械合金化(MA).通过调整球磨转速、球磨时间等工艺参数研究了其对粉末结构的影响,并对机械合金化粉末的物相、合金化特性、晶粒尺寸、点阵畸变及粉末形貌和颗粒度作了测定和分析讨论.机械合金化使晶粒细化并产生孪晶和位错.有利于原子扩散形成过饱和固溶体和非晶;高的球磨能有利于形成非晶相、晶粒细化和点阵畸变,350r/min球磨20h后晶粒尺寸可达25nm;输入的球磨能不同.粉末粒度的变化路径不同,但都会经历长大,变小和稳定三个不同阶段.  相似文献   

19.
以3Ti/Si/2C/0.2Al单质混合粉体为原料,采用机械合金化法制备Ti3SiC2材料.研究球磨工艺(球磨时间、球料比和球径大小、过程控制剂)对机械合金化合成Ti3SiC2影响.结果表明,机械合金化(球料比10:1,球径10 mm)单质混合粉体7 h后,原料粉体发生化学反应,生成了TiC和Ti3SiC2粉体和块体产物.球料比和球径大小对反应合成Ti3SiC2影响并不显著,但明显影响反应的孕育期.适当增大球径和球料比可明显缩短反应的孕育期,采用较大的磨球或过高的球料比会降低球磨效率,延长孕育期;添加过程控制剂(乙醇),不但会延长反应的孕育期,而且抑制反应合成Ti3SiC2.  相似文献   

20.
将高能球磨制备的原子比为1:1的Ti Ni合金粉进行等离子体真空烧结。利用XRD、EDS和SEM对合金粉和烧结样进行了成分与微观形貌的表征,同时对烧结样进行了硬度测试。结果表明:球磨22 h后Ti Ni粉呈非晶态粉末,球磨30 h后的TiNi合金粉发生了明显的固相反应,生成了TiNi、Ni_3Ti、Ti_3Ni_4等物相。等离子体烧结样的物相是Ti Ni,Ni_4Ti_3、Ni_3Ti和Ti_2Ni。平均晶粒尺寸约2μm,平均硬度(HV)达到9000 MPa,自然时效1年后的平均硬度达到6800MPa,是常规电弧熔炼法制备的Ti Ni合金的2~5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号