首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
我国变压吸附技术的工业应用现状及展望   总被引:18,自引:0,他引:18  
介绍了我国变压吸附技术近十多年发展状况及变压吸附技术在各应用领域的最新发展,并对今后的应用和发展作了展望。  相似文献   

2.
This study explains the single-component and binary mixture adsorption studies on two different coals from the Zonguldak Basin (Northwestern Turkey). Assessment of energetic heterogeneity of coal surface and its effect on the equilibrium binary gas adsorption are discussed. Single component adsorption tests were performed using methane and carbon dioxide at 30°C. Binary mixtures prepared with 10, 15 and 20% carbon dioxide were also tested at the same temperature. Various single-component adsorption isotherms were fitted to the experimental data of single gases. The data obtained from these models were interpreted to determine the energetic heterogeneity of the coals towards adsorption of methane and carbon dioxide. Ideal adsorbed solution (IAS) theory was used to predict the data and discrepancies between experimental data, and the model predictions were interpreted. Results showed that coals exhibit a heterogeneous behavior in gas adsorption. This heterogeneity can be different for each coal–gas pair and the extent of the heterogeneity makes the binary gas predictions differ from the experimental data. The deviations between IAS and experimental data increase as the amount of gas, to which the coal shows high heterogeneity, increases in the mixture.  相似文献   

3.
Rafael B. Rios 《Fuel》2011,90(1):113-119
The use of vessels filled with activated carbon to store and transport natural gas (NG) at moderate pressures (about 3.5 MPa) and ambient temperature (about 298 K) has been studied as a potential alternative to compressed natural gas at high pressures (ca. 20 MPa). The present study provides an experimental investigation of charge and discharge cycles of natural gas in a prototype storage vessel filled with activated carbon and analyses the effect of the gas composition on the adsorption capacity. The adsorption properties were evaluated by measuring isotherms for each component of NG in a magnetic suspension balance. The selectivities of the main constituents of natural gas in relation to methane were determined and the influence of the pressure on the selectivity was also observed. Although NG is composed mainly of methane (ca. 90% vol.), our experimental results indicate that the preferential adsorption of the heavier hydrocarbons and CO2 should be properly taken into account for the evaluation of the behavior of adsorbed natural gas systems along several charge and discharge cycles.  相似文献   

4.
Experimental results are reported on a pressure swing adsorption (PSA) process using carbon molecular sieve (CMS) for the separation of a gas mixture containing carbon dioxide, hydrocarbons (methane, ethane, propane, etc.) and nitrogen. This PSA process has direct applications in carbon dioxide removal or purification from landfill gas, natural gas processing plants and tertiary oil recovery effluent streams. The CMS-based PSA process separates the carbon dioxide in a single stage by using the differences in component diffusivities. This approach, therefore, provides a significant advantage compared to conventional equilibrium adsorption processes which require one separation stage for removing components such as ethane and propane that are more strongly adsorbed than carbon dioxide and another separation stage for removing components such as methane and nitrogen that are less strongly adsorbed than carbon dioxide. The CMS-based PSA process operates between a feed pressure of 20 to 40 bars and a regeneration pressure of 1.5 bars at ambient temperature and produces a 98+% carbon dioxide product. The PSA process can be integrated with a liquid carbon dioxide plant to produce food grade product.  相似文献   

5.
Two series of activated carbon discs have been prepared by chemical activation of olive stones with ZnCl2 and H3PO4. Some of the carbons have been post-treated in order to modify their porous texture and/or surface chemical composition. All carbons have been characterized by adsorption of N2 (−196 °C) and CO2 (0 °C) and immersion calorimetry into dichloromethane. The volume of methane adsorbed at 25 °C and 3.5 MPa is proportional to the surface area deduced from immersion calorimetry into dichloromethane. Consequently, it is possible to estimate, using a single experiment, the possibility of using activated carbons for the storage of natural gas. On the other hand, the methane uptake can be also correlated to the volume of micropores, provided by the adsorption of N2 at −196 °C and CO2 at 0 °C, although the correlations is not as good. Only carbons slightly activated, with low surface area and microporosity below around 0.6 nm, do not adjust the above correlations because they adsorb more methane than the expected, the effect of chemical nature of the carbon surface being almost negligible.  相似文献   

6.
Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide, and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these tech-niques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.  相似文献   

7.
In the current work, molecular dynamics simulation is employed to understand the intrinsic growth of carbon dioxide and methane hydrate starting from a seed crystal of methane and carbon dioxide respectively. This comparison was carried out because it has relevance to the recovery of methane gas from natural gas hydrate reservoirs by simultaneously sequestering a greenhouse gas like CO2. The seed crystal of carbon dioxide and methane hydrate was allowed to grow from a super-saturated mixture of carbon dioxide or methane molecules in water respectively. Two different concentrations (1:6 and 1:8.5) of CO2/CH4 molecules per water molecule were chosen based on gas–water composition in hydrate phase. The molecular level growth as a function of time was investigated by all atomistic molecular dynamics simulation under suitable temperature and pressure range which was well above the hydrate stability zone to ensure significantly faster growth kinetics. The concentration of CO2 molecules in water played a significant role in growth kinetics, and it was observed that maximizing the CO2 concentration in the aqueous phase may not result in faster growth of CO2 hydrate. On the contrary, methane hydrate growth was independent of methane molecule concentration in the aqueous phase. We have validated our results by performing experimental work on carbon dioxide hydrate where it was seen that under conditions appropriate for liquid CO2, the growth for carbon dioxide hydrate was very slow in the beginning.  相似文献   

8.
Shale gas, which predominantly consists of methane, is an important unconventional energy resource that has had a potential game-changing effect on natural gas supplies worldwide in recent years. Shale is comprised of two distinct components: organic material and clay minerals, the former providing storage for hydrocarbons and the latter minimizing hydrocarbon transport. The injection of carbon dioxide in the exchange of methane within shale formations improves the shale gas recovery, and simultaneously sequesters carbon dioxide to reduce greenhouse gas emissions. Understanding the properties of fluids such as methane and methane/carbon dioxide mixtures in narrow pores found within shale formations is critical for identifying ways to deploy shale gas technology with reduced environmental impact. In this work, we apply molecular-level simulations to explore adsorption and diffusion behavior of methane, as a proxy of shale gas, and methane/carbon dioxide mixtures in realistic models of organic materials. We first use molecular dynamics simulations to generate the porous structures of mature and overmature type-II organic matter with both micro- and mesoporosity, and systematically characterize the resulting dual-porosity organic-matter structures. We then employ the grand canonical Monte Carlo technique to study the adsorption of methane and the competing adsorption of methane/carbon dioxide mixtures in the organic-matter porous structures. We complement the adsorption studies by simulating the diffusion of adsorbed methane, and adsorbed methane/carbon dioxide mixtures in the organic-matter structures using molecular dynamics.  相似文献   

9.
A theoretical and experimental study of natural gas–air mixture combustion in a fluidized bed of sand particles is presented. The operating temperatures are lower than a critical temperature of 800 °C above which the combustion occurs in the vicinity of the fluidized bed. Our study focusses on the freeboard zone where most of the methane combustion takes place at such temperatures. Experimental results show the essential role of the projection zone in determining the global thermal efficiency of the reactor. The dense bed temperature, the fluidizing velocity and the mean particle diameter significantly affect the thermal behaviours.A model for natural gas–air mixture combustion in fluidized beds is proposed, counting for interactions between dense and dilute regions of the reactor [P. Pré, M. Hemati, B. Marchand, Study of natural gas combustion in fluidised beds: modelling and experimental validation, Chem. Eng. Sci. 53 (1998) (16), 2871] supplemented with the freeboard region modelling of Kunii–Levenspiel [D. Kunii, O. Levenspiel, Fluidized reactor models: 1. For bubbling beds of fines, intermediate and large particles. 2. For the lean phase: freeboard and fast fluidization, Ind. Eng. Chem. Res. 29 (1990) 1226–1234]. Thermal exchanges due to the convection between gas and particles, and due to the conduction and radiation phenomena between the gas-particle suspension and the reactor walls are counted. The kinetic scheme for the methane conversion is that proposed by Dryer and Glassman [F.L. Dryer, I. Glassman, High-temperature oxidation of CO and CH4, Proceedings of the 14th International Symposium on Combustion, The Combustion Institute, Pittsburg (1973) 987]. Model predictions are in good agreement with the measurements.  相似文献   

10.
Methane is a greenhouse gas, emitted from sources such as landfills. This paper presents a steady state model of methane biofiltration taking into consideration the impact of various parameters, such as the inlet methane concentration, the gas superficial velocity and the packing bed average temperature, on the methane biofilter efficiency. More specifically, the model developed here considers that the average bed temperature is influenced by the elimination capacity of methane in the biofilter, which is function of the methane inlet load. When using this model, it is possible to estimate the biofilter performance in terms of parameters, such as the conversion, elimination capacity and carbon dioxide production. Comparison of the model generated performance values with experimental data in the range of methane concentrations varying from 1500 to 9500 ppmv yields satisfactory results (<2–10% error, depending on the inlet methane concentration and on the performance parameter).  相似文献   

11.
In the present study, adsorption equilibrium and kinetic separation potential of β-zeolite is investigated for N2, O2, CO2 and CH4 gases by using concentration pulse chromatography. Adsorption equilibrium and kinetic parameters have been studied. Henry’s Law constants, heat of adsorption values, micro-pore diffusion coefficients and adsorption activation energies are determined experimentally. The three different mass transfer mechanisms, that have to take place for adsorption to occur, are discussed. From the equilibrium and kinetic data, the equilibrium and kinetic selectivities are determined for the separation of the gases studied.With β-zeolite, carbon dioxide has the highest adsorption Henry’s Law constant at all the temperatures studied, followed by methane, nitrogen and oxygen. Carbon dioxide separation from oxygen, nitrogen and methane has good equilibrium separation factors. This factor is not very high for methane/nitrogen and methane/oxygen systems and is the lowest for nitrogen/oxygen system. Micro-pore diffusion is the dominant mass transfer mechanism for all the systems studied, except CH4, with β-zeolite. The kinetic separation factors are very small at high temperatures for all the systems studied. Nitrogen/carbon dioxide and oxygen/carbon dioxide can be separated in kinetic processes with reasonable separation factors at low temperatures. Both equilibrium and kinetic separation factors decrease as column temperature increases. Considering all the observations from this study, it was concluded that β-zeolite is a good candidate for applications in flue gas separations, as well as natural gas and landfill gas purifications.  相似文献   

12.
Co/MgO catalysts with high Co-loading (>28 wt%) are able to initiate the reaction of methane with oxygen at temperatures around 500 °C. High conversions of methane ( 70%) and very high selectivities for hydrogen and carbon monoxide ( 90%) are obtained at very high reactant gas space velocities (105–106 h–1). The temperature of the catalyst at the conditions of partial oxidation of methane to form syngas was found to be extremely high (1200–1300 °C); it is about 600–850 °C higher than that previously reported by others. At these temperatures, high temperature homogeneous reactions may prevail. It is suggested that combustion of methane to carbon dioxide occurs on the catalyst with major heat release and that methane and water, respectively methane and carbon dioxide are reformed thermally in an endothermic reaction leading to syngas.  相似文献   

13.
Power‐to‐Methane is a technically feasible process that can store large amounts of electrical energy for a long time period. The produced gas of the process can be fed into the natural gas grid or used as fuel. An essential part of the process chain is the catalytic methanation of carbon dioxide. In the methanation process, carbon dioxide and hydrogen are converted into methane and water vapor. Carbon dioxide can be won from industrial processes, ambient air or biogas plants. In this paper, fundamentals and process developments of methanation of carbon dioxide are described.  相似文献   

14.
In this study, activated carbon fibers (ACFs) were surface modified with fluorine and mixed oxygen and fluorine gas to investigate the relationship between changes in surface properties by nitrogen and hydrogen adsorption capacity. The changes in surface properties of modified activated carbon fibers were investigated using X-ray photoelectron spectroscopy (XPS) and compared before and after surface treatment. The specific surface area and pore structures were characterized by the nitrogen adsorption isotherm at liquid nitrogen temperature. Hydrogen adsorption isotherms were obtained at 77 K and 1 bar by a volumetric method. The hydrogen adsorption capacity of fluorinated activated carbon fibers was the smallest of all samples. However, the bulk density in this sample was largest. This result could be explained by virial coefficients. The interaction of hydrogen-surface carbon increased with fluorination as the first virial coefficient. Also, the best fit adsorption model was found to explain the adsorption mechanism using a nonlinear curve fit. According to the goodness-of-fit, the Langmuir–Freundlich isotherm model was in good agreement with experimental data from this study.  相似文献   

15.
Assessment of simulated biogas as a fuel for the spark ignition engine   总被引:3,自引:0,他引:3  
Jingdang Huang  R.J Crookes 《Fuel》1998,77(15):1793-1801
Results are presented of tests with a variable compression ratio Ricardo E6 single-cylinder spark-ignition engine operating on simulated biogas formed from different mixtures of domestic natural gas and carbon dioxide. The fraction of carbon dioxide in the simulated biogas was changed from 0 to about 40% by volume to cover the range typically encountered in sources of biogas in practice. The tests covered a range of air:fuel ratios from rich to the lean operating limit at four speeds and a number of compression ratios. Measured results are given for power, exhaust temperature, thermal efficiency and the mole fractions of the regulated emissions carbon monoxide (CO), oxides of nitrogen (NOx) and total unburnt hydro-carbon (HC) in the exhaust gases. Experimental results indicate that the presence of carbon dioxide can improve NOx emissions, but since lower cylinder pressures result, engine power and thermal efficiency are reduced and the level of unburnt HC is increased. Measured data, however, suggest that it is possible to significantly increase the compression ratio as an effective means of improving biogas-fuelled engine performance when CO2 is present. While this would normally raise the emissions of both NOx and HC, the former is offset by the CO2 content of the biogas.  相似文献   

16.
Success of adsorbed natural gas (ANG) storage process is mainly based on the characteristics of the adsorbent, so various synthesized adsorbents were analyzed for methane adsorption on a thermodynamic basis. Activated carbon from rice husk (AC-RH) was synthesized and its methane adsorption capacities were compared with phenol based activated carbons (AC-PH2O and AC-PKOH). The adsorption experiments were conducted by volumetric method under various constant temperatures (293.15, 303.15, 313.15 and 323.15 K) and pressure up to 3.5MPa. Maximum methane adsorption was observed in AC-RH as its surface area is higher than the other two adsorbents. The experimental data were correlated well with Langmuir-Fruendlich isotherms. In addition, isosteric heat of adsorption was calculated by using Clausius-Clapeyron equation.  相似文献   

17.
A simulation study on gas-to-liquid (natural gas to Fischer–Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for maximum production of synthetic fuel. Optimum operating condition for GTL (gas-to-liquid) process was determined by changing reaction variable such as temperature. During the simulation, overall synthetic process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich–Kwong–Soave) equation. ATR (auto-thermal reforming) in synthesis gas production unit and slurry phase reaction over Co-based catalyst in FTS (Fischer–Tropsch synthesis) unit were considered as reaction models for GTL process. The effect of reaction temperature on CO conversion and C5–C20 hydrocarbon yield in FTS unit was mainly examined. Simulation and experimental results showed that optimum reaction temperature in FTS unit was 255 °C. Simulation results were also compared to experimental results to confirm the reliability of simulation model. Simulation results were reasonably well matched with experimental results.  相似文献   

18.
介绍了天然气中水分、硫化氢、二氧化碳、重烃、汞及氮气等杂质对LNG工厂液化的影响,以及天然气的净化工艺.根据某公司液化天然气工厂天然气来源变化,说明天然气的组成对天然气净化工艺选择的影响.  相似文献   

19.
The steam reforming of phenol towards H2 production was studied in the 650–800 °C range over a natural pre-calcined (air, 850 °C) calcite material. The effects of reaction temperature, water, hydrogen, and carbon dioxide feed concentrations, and gas hourly space velocity (GHSV, h−1) were investigated. The increase of reaction temperature in the 650–800 °C range and water feed concentration in the 40–50 vol% range were found to be beneficial for catalyst activity and H2-yield. A similar result was also obtained in the case of decreasing the GHSV from 85,000 to 30,000 h−1. The effect of concentration of carbon dioxide and hydrogen in the phenol/water feed stream was found to significantly decrease the rate of phenol steam reforming reaction. The latter was probed to be related to the reduction in the rate of water dissociation as evidenced by the significant decrease in the concentration of adsorbed bicarbonate and OH species on the surface of CaO according to in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)-CO2 adsorption experiments in the presence of water and hydrogen in the feed stream. Details of the CO2 adsorption on the CaO surface at different reaction temperatures and gas atmospheres using in situ DRIFTS and transient isothermal adsorption experiments with mass spectrometry were obtained. Bridged, bicarbonate and unidentate carbonate species were formed under CO2/H2O/He gas mixtures at 600 °C with the latter being the most populated. A substantial decrease in the surface concentration of bicarbonate and OH species was observed when the CaO surface was exposed to CO2/H2O/H2/He gas mixtures at 600 °C, result that probes for the inhibiting effect of H2 on the phenol steam reforming activity. Phenol steam reforming reaction followed by isothermal oxygen titration allowed the measurement of accumulated “carbonaceous” species formed during phenol steam reforming as a function of reaction temperature and short time on stream. An increase in the amount of “carbonaceous” species with reaction time (650–800 °C range) was evidenced, in particular at 800 °C (4.7 vs. 6.7 mg C/g solid after 5 and 20 min on stream, respectively).  相似文献   

20.
A combination of experiments and molecular simulations has been used to further understand the contribution of gas adsorption to the carbon dioxide (CO2) selectivity of nanoporous carbon (NPC) membranes as a function of temperature and under mixed gas conditions. Whilst there have been various publications on the adsorption of gases onto carbon materials, this study aims to benchmark a simulation model with experimental results using pure gases. The simulation model is then used to predict mixed gas behaviour. These mixed gas results can be used in the assessment of NPC membranes as a suitable technology for both carbon dioxide separations from air-blown syngas and from natural gas. The gas adsorption experiments and molecular simulations have confirmed that CO2 is more readily adsorbed on nanoporous carbon than methane (CH4) and nitrogen (N2). Increasing the temperature reduces the extent of adsorption and the CO2 selectivity. However, the difference between the CO2 and N2 heats of adsorption is significant resulting in good CO2/N2 separation even at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号