首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含钒TRIP钢热变形后在350~450℃等温处理30min,研究卷取温度对其显微组织和力学性能的影响.结果表明,随等温温度的升高,贝氏体、残余奥氏体的量以及残余奥氏体中碳浓度先增加后减少.断后伸长率、最大力非比例伸长率和应变硬化指数表现出与此类似的变化趋势.450℃等温处理时析出的渗碳体对延性和应变硬化指数有不利影响.热轧TRIP钢的卷取温度为400℃时将获得优良的综合力学性能.  相似文献   

2.
以低Si含Al热轧TRIP钢为研究对象,采用扫描电子显微镜、拉伸试验、X射线衍射仪和电子探针等试验方法,研究了不同等温温度对试验钢组织性能的影响。结果表明,试验钢的显微组织主要由多边形铁素体、贝氏体铁素体和残余奥氏体组成,随着等温温度的升高,残余奥氏体分解为新生成铁素体和碳化物;当等温温度为450 ℃时,试验钢的力学性能最佳,其抗拉强度为732.25 MPa,断后伸长率为36%,强塑积为26.36 GPa·%;残余奥氏体的体积分数先升高后降低,而C含量逐渐降低,等温温度为450 ℃时试验钢表现出较强的加工硬化行为。  相似文献   

3.
The multiphase constitution of a transformation-induced plasticity (TRIP)-assisted steel with a nominal composition of Fe–1.5Mn–1.5Si–0.3C (wt.%) was designed, utilizing a combination of computational methods and experimental validation, in order to achieve significant improvements in both strength and ductility. In this study, it was hypothesized that a microstructure with maximized ferrite and retained austenite volume fractions would optimize the strain hardening and ductility of multiphase TRIP-assisted steels. Computational thermodynamics and kinetics calculations were used to develop a predictive methodology to determine the processing parameters in order to reach maximum possible ferrite and retained austenite fractions during conventional two-stage heat treatment, i.e. intercritical annealing followed by bainitic isothermal transformation. Experiments were utilized to validate and refine the design methodology. Equal channel angular pressing was employed at a high temperature (950 °C) on the as-cast ingots as the initial processing step in order to form a homogenized microstructure with uniform grain/phase size. Using the predicted heat treatment parameters, a multiphase microstructure including ferrite, bainite, martensite and retained austenite was successfully obtained. The resulting material demonstrated a significant improvement in the true ultimate tensile strength (~1300 MPa) with good uniform elongation (~23%), as compared to conventional TRIP steels. This provided a mechanical property combination that has not been exhibited before by low-alloy first-generation high-strength steels. The developed computational framework for the selection of heat treatment parameters can also be utilized for other TRIP-assisted steels and help design new microstructures for advanced high-strength steels, minimizing the need for cumbersome experimental optimization.  相似文献   

4.
利用光学显微镜、拉伸试验机、扫描电镜、XRD和EBSD等手段对22MnB5钢的微观组织及力学性能进行了表征,并重点分析了一步法Q&P工艺处理后的22MnB5钢中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明:采用一步法Q&P工艺,可以获得抗拉强度超过1400 MPa,伸长率超过15%的超高强度22MnB5钢板。随着淬火温度从240 ℃升高至300 ℃,22MnB5钢的组织由马氏体转变为马氏体+残留奥氏体复相组织,试样中的残留奥氏体含量逐渐增加。相同配分温度延长配分时间,残留奥氏体含量呈现先增加后降低趋势。不同热处理工艺下残留奥氏体中的平均碳含量为1.49wt%。采用一步法Q&P热处理工艺可以使残留奥氏体中富集碳,提高残留奥氏体稳定性,强塑积可以达到22.14 GPa·%。  相似文献   

5.
Cold-rolled and annealed ultra-high strength sheet steels with good ductility accompanied by TRIP of retained austenite have received considerable attention in recent years. This paper discusses the effect of silicon content and annealing temperature on the formation of retained austenite and the mechanical properties in Fe-0.34%C-1.7% Mn steels whose structure consists of ferrite, bainite and retained austenite. Silicon inhibited the cementite formation in bainite during isothermal holding and partitioned carbon from bainite to austenite, resulting in an increase in retained austenite content. When the silicon content was increased to 1.0 wt.% or higher, the amount of retained austenite markedly increased leading to good mechanical properties. 0.34%C-1.03%Si-1.7%Mn steel showed a high tensile strength of 1,030 MPa and a total elongation of 34.5% when annealed at 780°C for 5 min followed by isothermal holding at 400°C for 5 min. In this case, the amount of retained austenite was about 25%. The variation in tensile strength-elongation combination had good correlation with that in the amount of retained austenite with both annealing temperature and silicon content. The most retained austenite was obtained in the steel annealed at just above AC1 temperature. The annealing temperature which gives the most retained austenite was decreased with decreasing the silicon content.  相似文献   

6.
Mo containing high-C-Cr bearing steel was modified with Si (0.8–1.5 wt.%) and 0.8Si–1.0Al to prepare nanostructured bainite by low-temperature isothermal heat treatment. The modified steels were isothermal held at 220 to 240 °C after partial austenitization in an intercritical gamma+carbide region, and the resultant microstructure and mechanical properties were studied. Carbide-free nanostructured bainite with plate thickness below 100 nm and film retained austenite, as well as a small amount of undissolved carbide particles, was obtained in the modified steels except in 0.8Si steel, in which carbides precipitated in bainitic ferrite. As Si content increased, the mean thickness of bainitic ferrite plates modestly decreased, whereas the fraction of retained austenite markedly increased. The thickness of bainitic ferrite plate and the fraction of retained austenite in Si-Al-modified steel were smaller than those in Si-modified steels. The hardness and elongation of the Si-Al-modified steel were lower than those of Si-modified steels. The yield strength of Si-Al-modified steel was superior to that of Si-modified steels. Mid-level ultimate tensile strength and impact toughness were achieved in Si-Al-modified steel. For bearing applications, Si-modified steels could provide higher hardness and toughness but lower dimensional stability. Meanwhile, Si-Al-modified steel could offer higher dimensional stability but lower hardness and toughness.  相似文献   

7.
等温淬火温度对含铌TRIP钢组织和力学性能的影响   总被引:1,自引:0,他引:1  
利用金相显微镜、X射线衍射等方法研究了0.15C-1.46Si-1.56Mn-0.06Nb冷轧TRIP钢板等温淬火温度对组织和力学性能的影响。结果表明,试验钢最佳的临界热处理工艺:在840℃两相区保温180 s,再快速冷却到420℃并在该温度保温240 s,进行贝氏体等温转变处理。采用这种热处理工艺,试验钢的微观组织为铁素体+贝氏体+残留奥氏体,其中铁素体占72%,贝氏体占20%,残留奥氏体占8%,可获得较佳的相变诱发塑性和较好的强韧性配合,其强塑积可达到2.5×104MPa.%,提高或降低贝氏体等温淬火温度都会降低强塑积。结果还表明,在840℃,适当的延长热处理时间可以提高残留奥氏体体积分数及残留奥氏体的碳含量,有助于提高材料的强塑积。  相似文献   

8.
高硅铸钢残余奥氏体分布形态及其对力学性能的影响   总被引:3,自引:0,他引:3  
陈祥  李言祥 《金属学报》2007,43(3):235-239
采用透射电子显微镜(TEM)对高硅铸钢等温淬火热处理后的显微组织以及残余奥氏体分布形态进行了研究,对等温淬火组织中残余奥氏体量进行了测定.结果表明,残余奥氏体呈薄膜状及块状两种分布形态.薄膜状分布的残余奥氏体与贝氏体铁素体间的位向符合K-S关系,对钢的综合力学性能特别是韧性有积极的作用;而呈块状分布的残余奥氏体,由于其机械稳定性差,对钢的各项力学性能有不利的影响.要获得具有优异综合力学性能的高硅铸钢,薄膜状残余奥氏体与块状残余奥氏体体积分数量的比值Vγ-F/Vγ-B要大于1.0.  相似文献   

9.
唐代明 《热处理》2009,24(6):6-8
低合金TRIP钢的显微组织中的残留奥氏体使其具有优良的强度和延性组合。概述了低合金TRIP钢的热处理工艺与残留奥氏体形成的关系。分析了冷轧TRIP钢退火前组织、临界区退火以及中温等温处理对残留奥氏体形成的影响。对低合金TRIP钢中残留奥氏体的形成等物理冶金学进行研究将促进其发展和推广应用。  相似文献   

10.
含铌TRIP钢的显微组织和残留奥氏体稳定性分析   总被引:1,自引:0,他引:1  
研究了含Nb与不含Nb两种冷轧TRIP钢热处理后的显微组织和力学性能,并用X射线衍射法计算了TRIP钢中残留奥氏体含量及残留奥氏体中的碳含量.试验结果表明,TRIP钢中铁素体体积分数随退火温度的升高逐渐减少,在相同热处理工艺下,与不含Nb试样比较,含Nb试样的残留奥氏体中碳含量较高,强塑积较大.残留奥氏体量大约相同时,含Nb试样残留奥氏体更为稳定,综合力学性能也更好.  相似文献   

11.
In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe–0.28 C–1.55 Mn–2.06 Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the microstructure of the ferrite, bainite and blocky retained austenite obtained by conventional two-stage heat treatment, the microstructure subjected to quenching plus two-stage heat treatment was composed of the ferrite, lath bainite and film-like retained austenite. The corresponding tensile behavior and mechanical stability of retained austenite were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the mechanical stability of blocky retained austenite grains is lower and most of them transform to martensite during the tensile deformation, which leads to higher ultimate tensile strength and instantaneous work hardening exponent. Film-like retained austenite has relatively higher stability, which could cause sustained work hardening and high ductility as well as product of strength and elongation.  相似文献   

12.
The microstructural and mechanical properties of a newly designed tool steel (L-40), specifically designed to be employed in the laser powder bed fusion (LPBF) technique, were examined. Melt pool boundaries with submicron dendritic structures and about 14% retained austenite phase were evident after printing. The grain orientation after high cooling rate solidification is mostly < 110 >  α∥ building direction (BD). Then, the heat treatment converted the microstructure into a conventional martensitic phase, reduced the retained austenite to about 1.5%, and increased < 111 >  α∥BD texture. The heat-treated sample exhibits higher tensile strength (1720 ± 14 MPa) compared to the as-printed sample (1540 ± 26 MPa) along the building direction, mainly due to hardening caused by a lower volume fraction of retained austenite phase and precipitation of carbides. As a consequence of the strength-to-ductility trade-off, the heat-treated sample showed lower elongation (10% ± 2%) than that of the as-printed sample (18% ± 2%). It was observed that transformation-induced plasticity (TRIP) occurs in both the as-printed and heat-treated samples during tensile testing, which dynamically transforms the retained austenite into martensite, leading to improved ductility. The minimum driving force to initiate the displacive phase transformation is about 6000 J/mol, which was achieved during tensile testing. The strength and ductility of LPBF-produced L-40 were compared with the other LPBF-produced tool steels in literature; the data indicate that heat-treated L-40 has an excellent combination of strength and ductility complemented with high printability.  相似文献   

13.
研究了淬火加热温度对超细晶Q&P钢微观组织、元素分布、残留奥氏体体积分数和力学性能的影响。结果表明,当淬火加热温度升高时,铁素体含量逐渐减少,马氏体含量升高,残留奥氏体含量呈现先增加后减少的趋势,高淬火加热温度下C元素的扩散速率加快,残留奥氏体的机械稳定性更好。软相铁素体的存在为试验钢提供了良好的韧性。当淬火加热温度为820 ℃时,Q&P钢的综合力学性能最好,抗拉强度为863 MPa,伸长率为26.1%,强塑积为22.5 GPa·%。  相似文献   

14.
Excellent mechanical properties are obtained by austempering after hot deformation without subsequent heat treatment in the present Si-Mn TRIP steel sheets. Isothermal holding time after finishing rolling has affected the mechanical properties of this steel. The results show that the sample exhibits a good combination of ultimate tensile strength and total elongation when it is held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase of isothermal holding time, and a further increase in the holding duration results in a decrease of it. The tensile strength, total elongation and strength ductility reach the maximum values (774MPa, 33% and 25542MPa% respectively) for this sort of hot rolled Si-Mn TRIP steel using the optimal technology.  相似文献   

15.
Austempered ductile iron (ADI) exhibits a favourable combination of strength and toughness, and has been used as a substitute for quench-tempered or carburise-quenched steel. A characteristic feature of bainite transformation of cast iron, as opposed to carbon steel, is that precipitation of carbide is suppressed by the high concentration of silicon. Thus, a favourable structure, consisting of bainitic ferrite and retained austenite without carbide, can be provided by the optimum austempering treatment. Such microstructure and the mechanical properties of the iron are significantly affected by the conditions of the austempering treatment and the chemical composition. In this study, several grades of ductile iron were austempered under various conditions. The relationship between the impact strength, the quantity of retained austenite and the isothermal transformation curve was investigated. The stability of the retained austenite is considered important, because ADI contains a large amount of retained austenite which contributes to the improvement of ductility and toughness and which may transform to martensite when held at low temperature or subjected to stress. In this study, the stability of the retained austenite at low temperatures was examined by holding or stressing to establish the relations between transformation and temperature, stress and strain.

When the austempering time is short, the untransformed austenite partially transforms to martensite during air cooling, due to the lower carbon content, resulting in lower impact strength. As the austempering time increases, the untransformed austenite is stabilised by carbon-enrichment and there is little transformation to martensite, resulting in a large amount of retained austenite and higher impact strength. When the austempering time becomes much longer, the carbon-enriched austenite decomposes, presumably to bainitic ferrite and carbide, decreasing impact strength. In increasing the silicon content, precipitation of carbide in bainite is suppressed and both the maximum impact value and the content of retained austenite increase. The decreasing rates after the maxima through an additional isothermal holding becomes smaller.

By holding at temperatures down to –40°C, the decrease in retained austenite and the increase in hardness are both small. The retained austenite is stable under stress lower than that required to cause plastic deformation. Compressive stress hinders the martensitic transformation, because the transformation is accompanied by volume expansion.  相似文献   

16.
采用盐浴对两种硅含量不同的试验钢进行了淬火配分处理,并用金相显微镜、扫描电镜与拉伸试验机对不同淬火温度下试验钢组织及性能的转变规律展开了研究。结果表明,试验钢的显微组织由铁素体、马氏体、残留奥氏体与贝氏体组成;硅含量增加,有利于试验钢中残留奥氏体体积分数提高,抗拉强度和屈服强度显著提高,伸长率降低,强度随淬火温度变化的幅度减小;经260 ℃淬火、360 ℃配分后,2.13%(质量分数)Si钢在拥有高强度的同时保持了较好的伸长率,其抗拉强度为958.66 MPa,屈服强度为458.99 MPa,伸长率为15.35%,强塑积为14.66 GPa·%,综合力学性能最佳。  相似文献   

17.
The room-temperature stability of the retained austenite against strain-induced martensitic transformation, its deformation behavior, the response to the bainitic isothermal treatment, the appearance of yield point elongation and other peculiarities of plastic flow, and the mechanical properties of transformation-induced plasticity(TRIP) steel were tailored based on the chemical homogeneity and the relative distribution of the retained austenite, bainite, and ferrite in the microstructure. The presence of ferritic-pearlitic banded structure in the initial microstructure resulted in an inhomogeneous TRIP microstructure, in which the retained austenite and bainite were confined to some bands and it was found to be responsible for the resultant inferior mechanical properties. The appearance of discontinuous yielding for the chemically inhomogeneous material was related to the martensitic transformation of unstable retained austenite at the initial stage of tensile deformation. These results are essential for better understanding of the behavior of advanced high-strength steels and their applications.  相似文献   

18.
The microstructure and tensile behavior of low-density steels containing 5 mass% Al were investigated. An alloy obtained under a specific heat treatment condition showed deformation-induced martensitic transformation, which yielded excellent mechanical properties of a high tensile strength of >900 MPa and a high total elongation of >50%. The volume fraction and grain size of the austenite depended on the annealing temperature, which resulted in a transition from stable to metastable behavior of the austenite. The effects of solute content on grains and of austenite grain size on stability were discussed.  相似文献   

19.
直接淬火-碳分配处理后高强度钢的组织与力学性能   总被引:1,自引:0,他引:1  
采用一种中碳低合金高强度钢,在轧后进行直接淬火后再快速升温至400~600℃进行碳分配处理的直接淬火-碳分配(Quenching Partitioning)处理(DQP),研究DQP工艺对钢的组织与力学性能的影响。利用扫描电镜和透射电镜观察组织及析出物的变化,采用X射线衍射仪分析了钢中残留奥氏体体积分数。结果表明:DQP处理后,钢的组织为板条马氏体组织和残留奥氏体。马氏体板条宽150~250 nm;残留奥氏体位于马氏体板条间,随工艺参数不同,其体积分数在4%~8%。钢中析出物尺寸大多为20 nm左右。经过DQP处理后,钢的抗拉强度达到1200 MPa以上,伸长率15%~17%。-40℃冲击功达到30 J以上。合理的淬火终淬温度可以获得更多残留奥氏体,而升高分配温度会增加析出、并使析出物长大,这是提高钢的强度和韧性的主要原因。  相似文献   

20.
Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号