首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analyzing the dependencies between spike trains is an important step in understanding how neurons work in concert to represent biological signals. Usually this is done for pairs of neurons at a time using correlation-based techniques. Chornoboy, Schramm, and Karr (1988) proposed maximum likelihood methods for the simultaneous analysis of multiple pair-wise interactions among an ensemble of neurons. One of these methods is an iterative, continuous-time estimation algorithm for a network likelihood model formulated in terms of multiplicative conditional intensity functions. We devised a discrete-time version of this algorithm that includes a new, efficient computational strategy, a principled method to compute starting values, and a principled stopping criterion. In an analysis of simulated neural spike trains from ensembles of interacting neurons, the algorithm recovered the correct connectivity matrices and interaction parameters. In the analysis of spike trains from an ensemble of rat hippocampal place cells, the algorithm identified a connectivity matrix and interaction parameters consistent with the pattern of conjoined firing predicted by the overlap of the neurons' spatial receptive fields. These results suggest that the network likelihood model can be an efficient tool for the analysis of ensemble spiking activity.  相似文献   

2.
This paper discusses a method to estimate the expected value of the Gaussian kernel in the presence of incomplete data. We show how, under the general assumption of a missing-at-random mechanism, the expected value of the Gaussian kernel function has a simple closed-form solution. Such a solution depends only on the parameters of the Gamma distribution which is assumed to represent squared distances. Furthermore, we show how the parameters governing the Gamma distribution depend only on the non-central moments of the kernel arguments, via the second-order moments of their squared distance, and can be estimated by making use of any parametric density estimation model of the data distribution. We approximate the data distribution with the maximum likelihood estimate of a Gaussian mixture distribution. The validity of the method is empirically assessed, under a range of conditions, on synthetic and real problems and the results compared to existing methods. For comparison, we consider methods that indirectly estimate a Gaussian kernel function by either estimating squared distances or by imputing missing values and then computing distances. Based on the experimental results, the proposed method consistently proves itself an accurate technique that further extends the use of Gaussian kernels with incomplete data.  相似文献   

3.
A new missing data algorithm ARFIL gives good results in spectral estimation. The log likelihood of a multivariate Gaussian random variable can always be written as a sum of conditional log likelihoods. For a complete set of autoregressive AR(p) data the best predictor in the likelihood requires only p previous observations. If observations are missing, the best AR predictor in the likelihood will in general include all previous observations. Using only those observations that fall within a finite time interval will approximate this likelihood. The resulting non-linear estimation algorithm requires no user provided starting values. In various simulations, the spectral accuracy of robust maximum likelihood methods was much better than the accuracy of other spectral estimates for randomly missing data.  相似文献   

4.
Shared kernel models for class conditional density estimation   总被引:3,自引:0,他引:3  
We present probabilistic models which are suitable for class conditional density estimation and can be regarded as shared kernel models where sharing means that each kernel may contribute to the estimation of the conditional densities of an classes. We first propose a model that constitutes an adaptation of the classical radial basis function (RBF) network (with full sharing of kernels among classes) where the outputs represent class conditional densities. In the opposite direction is the approach of separate mixtures model where the density of each class is estimated using a separate mixture density (no sharing of kernels among classes). We present a general model that allows for the expression of intermediate cases where the degree of kernel sharing can be specified through an extra model parameter. This general model encompasses both the above mentioned models as special cases. In all proposed models the training process is treated as a maximum likelihood problem and expectation-maximization algorithms have been derived for adjusting the model parameters.  相似文献   

5.
The conditional likelihood approach is a sensible choice for a hierarchical logistic regression model or other generalized regression models with binary data. However, its heavy computational burden limits its use, especially for the related mixed-effects model. A modified profile likelihood is used as an accurate approximation to conditional likelihood, and then the use of two methods for inferences for the hierarchical generalized regression models with mixed effects is proposed. One is based on a hierarchical likelihood and Laplace approximation method, and the other is based on a Markov chain Monte Carlo EM algorithm. The methods are applied to a meta-analysis model for trend estimation and the model for multi-arm trials. A simulation study is conducted to illustrate the performance of the proposed methods.  相似文献   

6.
In domains like bioinformatics, information retrieval and social network analysis, one can find learning tasks where the goal consists of inferring a ranking of objects, conditioned on a particular target object. We present a general kernel framework for learning conditional rankings from various types of relational data, where rankings can be conditioned on unseen data objects. We propose efficient algorithms for conditional ranking by optimizing squared regression and ranking loss functions. We show theoretically, that learning with the ranking loss is likely to generalize better than with the regression loss. Further, we prove that symmetry or reciprocity properties of relations can be efficiently enforced in the learned models. Experiments on synthetic and real-world data illustrate that the proposed methods deliver state-of-the-art performance in terms of predictive power and computational efficiency. Moreover, we also show empirically that incorporating symmetry or reciprocity properties can improve the generalization performance.  相似文献   

7.
In machine learning and statistics, kernel density estimators are rarely used on multivariate data due to the difficulty of finding an appropriate kernel bandwidth to overcome overfitting. However, the recent advances on information-theoretic learning have revived the interest on these models. With this motivation, in this paper we revisit the classical statistical problem of data-driven bandwidth selection by cross-validation maximum likelihood for Gaussian kernels. We find a solution to the optimization problem under both the spherical and the general case where a full covariance matrix is considered for the kernel. The fixed-point algorithms proposed in this paper obtain the maximum likelihood bandwidth in few iterations, without performing an exhaustive bandwidth search, which is unfeasible in the multivariate case. The convergence of the methods proposed is proved. A set of classification experiments are performed to prove the usefulness of the obtained models in pattern recognition.  相似文献   

8.
Estimating two-dimensional firing rate maps is a common problem, arising in a number of contexts: the estimation of place fields in hippocampus, the analysis of temporally nonstationary tuning curves in sensory and motor areas, the estimation of firing rates following spike-triggered covariance analyses, etc. Here we introduce methods based on Gaussian process nonparametric Bayesian techniques for estimating these two-dimensional rate maps. These techniques offer a number of advantages: the estimates may be computed efficiently, come equipped with natural errorbars, adapt their smoothness automatically to the local density and informativeness of the observed data, and permit direct fitting of the model hyperparameters (e.g., the prior smoothness of the rate map) via maximum marginal likelihood. We illustrate the method's flexibility and performance on a variety of simulated and real data.  相似文献   

9.
Methods for improving the basic kernel density estimator include variable locations, variable bandwidths and variable weights. Typically these methods are implemented separately and via pilot estimation of variation functions derived from asymptotic considerations. The starting point here is a simple maximum likelihood procedure which allows (in its greatest generality) variation of all these quantities at once, bypassing asymptotics and explicit pilot estimation. One special case of this approach is the density estimator associated with nonparametric maximum likelihood estimation (NPMLE) in a normal location mixture model. Another, closely associated with the NPMLE, is a kernel convolution sieve estimator proposed in 1982 but little used in practice to date. Simple algorithms are utilised, a simulation study is reported on, a method for bandwidth selection is investigated and an illustrative example is given. The simulations and other considerations suggest that the kernel convolution sieve provides an especially promising framework for further practical utilisation and development. And the method has a further advantage: it automatically reduces, where appropriate, to a few-component mixture model which indicates and initialises parametric mixture modelling of the data.  相似文献   

10.
Analogy based estimation (ABE) generates an effort estimate for a new software project through adaptation of similar past projects (a.k.a. analogies). Majority of ABE methods follow uniform weighting in adaptation procedure. In this research we investigated non-uniform weighting through kernel density estimation. After an extensive experimentation of 19 datasets, 3 evaluation criteria, 5 kernels, 5 bandwidth values and a total of 2090 ABE variants, we found that: (1) non-uniform weighting through kernel methods cannot outperform uniform weighting ABE and (2) kernel type and bandwidth parameters do not produce a definite effect on estimation performance. In summary simple ABE approaches are able to perform better than much more complex approaches. Hence,—provided that similar experimental settings are adopted—we discourage the use of kernel methods as a weighting strategy in ABE.  相似文献   

11.
Into the Blue: Better Caustics through Photon Relaxation   总被引:1,自引:0,他引:1  
The photon mapping method is one of the most popular algorithms employed in computer graphics today. However, obtaining good results is dependent on several variables including kernel shape and bandwidth, as well as the properties of the initial photon distribution. While the photon density estimation problem has been the target of extensive research, most algorithms focus on new methods of optimising the kernel to minimise noise and bias. In this paper we break from convention and propose a new approach that directly redistributes the underlying photons. We show that by relaxing the initial distribution into one with a blue noise spectral signature we can dramatically reduce background noise, particularly in areas of uniform illumination. In addition, we propose an efficient heuristic to detect and preserve features and discontinuities. We then go on to demonstrate how reconfiguration also permits the use of very low bandwidth kernels, greatly improving render times whilst reducing bias.  相似文献   

12.
Naïve Bayes learners are widely used, efficient, and effective supervised learning methods for labeled datasets in noisy environments. It has been shown that naïve Bayes learners produce reasonable performance compared with other machine learning algorithms. However, the conditional independence assumption of naïve Bayes learning imposes restrictions on the handling of real-world data. To relax the independence assumption, we propose a smooth kernel to augment weights for the likelihood estimation. We then select an attribute weighting method that uses the mutual information metric to cooperate with the proposed framework. A series of experiments are conducted on 17 UCI benchmark datasets to compare the accuracy of the proposed learner against that of other methods that employ a relaxed conditional independence assumption. The results demonstrate the effectiveness and efficiency of our proposed learning algorithm. The overall results also indicate the superiority of attribute-weighting methods over those that attempt to determine the structure of the network.  相似文献   

13.
针对噪声分布未知的ARMAX系统,提出了一种自适应非参数噪声密度估计方法,由估计误差动态调整高斯核函数的全局带宽和局部带宽,实现了未知噪声分布密度的自适应估计;通过极小化似然函数,给出了基于噪声密度估计的参数辨识迭代算法,分析了算法的收敛性并给出了算法收敛的充分条件.仿真结果表明本文提出的算法在系统噪声未知时具有较强的抗噪能力和良好的收敛性.  相似文献   

14.
Density estimation and random variate generation using multilayernetworks   总被引:1,自引:0,他引:1  
In this paper we consider two important topics: density estimation and random variate generation. We present a framework that is easily implemented using the familiar multilayer neural network. First, we develop two new methods for density estimation, a stochastic method and a related deterministic method. Both methods are based on approximating the distribution function, the density being obtained by differentiation. In the second part of the paper, we develop new random number generation methods. Our methods do not suffer from some of the restrictions of existing methods in that they can be used to generate numbers from any density provided that certain smoothness conditions are satisfied. One of our methods is based on an observed inverse relationship between the density estimation process and random number generation. We present two variants of this method, a stochastic, and a deterministic version. We propose a second method that is based on a novel control formulation of the problem, where a "controller network" is trained to shape a given density into the desired density. We justify the use of all the methods that we propose by providing theoretical convergence results. In particular, we prove that the L(infinity) convergence to the true density for both the density estimation and random variate generation techniques occurs at a rate O((log log N/N)((1-epsilon)/2)) where N is the number of data points and epsilon can be made arbitrarily small for sufficiently smooth target densities. This bound is very close to the optimally achievable convergence rate under similar smoothness conditions. Also, for comparison, the (2) root mean square (rms) convergence rate of a positive kernel density estimator is O(N(-2/5)) when the optimal kernel width is used. We present numerical simulations to illustrate the performance of the proposed density estimation and random variate generation methods. In addition, we present an extended introduction and bibliography that serves as an overview and reference for the practitioner.  相似文献   

15.
Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.  相似文献   

16.
Many common machine learning methods such as support vector machines or Gaussian process inference make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and regularization operators. In this work these objects are presented in a general, unifying framework and interrelations are highlighted.With this in mind we then show how linear stochastic differential equation models can be incorporated naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms of differential equations. We focus especially on ordinary differential equations, also known as dynamical systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter methods based on such models.In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to finite domains, implying that differential equations are treated via their corresponding finite difference equations.  相似文献   

17.
In this paper we introduce the Birnbaum–Saunders autoregressive conditional duration (BS-ACD) model as an alternative to the existing ACD models which allow a unimodal hazard function. The BS-ACD model is the first ACD model to integrate the concept of conditional quantile estimation into an ACD model by specifying the time-varying model dynamics in terms of the conditional median duration, instead of the conditional mean duration. In the first half of this paper we illustrate how the BS-ACD model relates to the traditional ACD model, and in the second half we discuss the assessment of goodness-of-fit for ACD models in general. In order to facilitate both of these points, we explicitly illustrate the similarities and differences between the BS-ACD model and the Generalized Gamma ACD (GG-ACD) model by comparing and contrasting their formulation, estimation, and results from fitting both models to samples for six NYSE securities.  相似文献   

18.
In this article, two semiparametric approaches are developed for analyzing randomized response data with missing covariates in logistic regression model. One of the two proposed estimators is an extension of the validation likelihood estimator of Breslow and Cain [Breslow, N.E., and Cain, K.C. 1988. Logistic regression for two-stage case-control data. Biometrika. 75, 11-20]. The other is a joint conditional likelihood estimator based on both validation and non-validation data sets. We present a large sample theory for the proposed estimators. Simulation results show that the joint conditional likelihood estimator is more efficient than the validation likelihood estimator, weighted estimator, complete-case estimator and partial likelihood estimator. We also illustrate the methods using data from a cable TV study.  相似文献   

19.
While most previous work in the subject of Bayesian Fault diagnosis and control loop diagnosis use discretized evidence for performing diagnosis (an example of evidence being a monitor reading), discretizing continuous evidence can result in information loss. This paper proposes the use of kernel density estimation, a non-parametric technique for estimating the density functions of continuous random variables. Kernel density estimation requires the selection of a bandwidth parameter, used to specify the degree of smoothing, and a number of bandwidth selection techniques (optimal Gaussian, sample-point adaptive, and smoothed cross-validation) are discussed and compared. Because kernel density estimation is known to have reduced performance in high dimensions, this paper also discusses a number of existing preprocessing methods that can be used to reduce the dimensionality (grouping according to dependence, and independent component analysis). Bandwidth selection and dimensionality reduction techniques are tested on a simulation and an industrial process.  相似文献   

20.
Within the regression framework, we show how different levels of nonlinearity influence the instantaneous firing rate prediction of single neurons. Nonlinearity can be achieved in several ways. In particular, we can enrich the predictor set with basis expansions of the input variables (enlarging the number of inputs) or train a simple but different model for each area of the data domain. Spline-based models are popular within the first category. Kernel smoothing methods fall into the second category. Whereas the first choice is useful for globally characterizing complex functions, the second is very handy for temporal data and is able to include inner-state subject variations. Also, interactions among stimuli are considered. We compare state-of-the-art firing rate prediction methods with some more sophisticated spline-based nonlinear methods: multivariate adaptive regression splines and sparse additive models. We also study the impact of kernel smoothing. Finally, we explore the combination of various local models in an incremental learning procedure. Our goal is to demonstrate that appropriate nonlinearity treatment can greatly improve the results. We test our hypothesis on both synthetic data and real neuronal recordings in cat primary visual cortex, giving a plausible explanation of the results from a biological perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号