首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
负载敏感系统的原理及其应用   总被引:1,自引:0,他引:1  
负载敏感系统是近年来在工程机械领域获得广泛应用的一项技术。文章介绍了该技术的原理、结构、类型及其特点,并分析了具有抗饱和功能的负载独立流量分配系统实现负载独立流量分配的过程。依据实例探讨了新型负载敏感系统对比传统流量控制方式的节能优势。  相似文献   

2.
主要针对阀前负载敏感技术在执行机构进行复合动作,泵流量不能满足系统需要时系统出现流量分配与负载有关的问题,提出了一种新的抗饱和原理并通过仿真软件进行了仿真分析及台架试验,结果表明:新的抗饱和原理可以实现在泵流量不能满足系统需要时与负载无关的流量比例分配。  相似文献   

3.
传统负载敏感液压系统中多执行器同时运动时,执行器的协调运动会因泵的流量不足而受到影响。根据独立阀口控制系统的优势,采用压力流量复合控制策略,并给出了多执行器复合动作时流量分配控制方法,实现了系统流量在惯性负载工况下执行器复合动作时的合理分配,并能降低负载力突变带来的干扰。最后通过AMESim和MATLAB联合仿真验证了在系统流量饱和时,该控制方法可以保证执行器承受惯性负载和负载发生突变时,拥有较好的协调性和稳定性。  相似文献   

4.
根据液压旋耕机的工况特点,基于定流量阀后补偿负载敏感原理设计液压旋耕机的工作系统,分析该系统工作原理,采用AMESim平台搭建该工作装置负载敏感系统仿真模型,仿真分析该系统分别处于变负载工况、多路阀不同开口工况与流量饱和工况下的工作特性。由仿真可知,该负载敏感系统各执行机构所需流量主要取决于多路阀开口面积,与负载无关。且当系统发生流量饱和时,会根据多路阀前后压差按比例分配定量泵输出流量,使各执行机构独立地工作。证实了将负载敏感系统运用在旋耕机中,使旋耕机能够实现单泵驱动多个动作,实现升降液压缸与回转液压马达的复合动作,使其工作系统便于控制。  相似文献   

5.
负载口独立控制技术解决了传统阀控缸系统操纵性和节能性难以同时达到最优的问题,但负载口独立控制系统在恶劣工况下,控制器的抗干扰能力可能成为制约负载口独立控制技术广泛应用的一个关键问题。提出将PWM控制的新型数字流量阀应用于负载口独立控制系统中,介绍了新型数字流量阀结构及负载口独立控制系统原理,提出了对液压缸两腔流量、压力分别进行复合控制的控制策略。通过SimulationX软件建立系统仿真模型,对液压缸典型工况进行仿真分析。结果表明:通过对系统进行前馈 反馈复合控制,当载波频率大于40 Hz时,基于数字流量阀的负载口独立控制系统能够实现对液压缸速度的平稳控制。  相似文献   

6.
负载敏感技术广泛应用于工程机械领域,而实际使用中系统参数的调整及流量饱和现象一直为人们所关注。通过对负载敏感系统基本结构建模分析,得到了补偿阀弹簧压缩过程的负载敏感阀流量 压力关系曲线。基于负载敏感阀流量 压力关系,对负载敏感液压系统的工作原理进行分析,并着重对负载敏感系统的流量饱和现象展开研究,为工程机械负载敏感液压系统抗饱和设计提供理论指导。  相似文献   

7.
文章主要介绍负载敏感系统LS和LUDV的结构特点及流量分配原理,利用AMESim软件建立系统模型,通过仿真,分析了两种系统在工作过程中的特点及差异,为更好地理解、选用及维护负载敏感系统提供参考。  相似文献   

8.
建立阀控缸系统负载流量方程时值得注意的问题   总被引:1,自引:0,他引:1  
对于阀控缸系统进行动态分析时,必然要用到负载流量。在建立负载流量方程时,有的文献却出现了不易察觉的错误,这将直接影响到对系统进行正确的动态分析。文章分析了产生这种错误的原因,指出了正确求出阀控缸系统负载流量的关键。  相似文献   

9.
在超越负载工况下,传统液压系统中负载控制阀或平衡阀负载速度控制效果差、容易发生速度抖动,为改善这些不足,采用负载口独立技术并进行速度控制特性的分析,给出了压力流量复合控制策略,建立了超越伸出和超越缩回两种工况下的数学模型,通过AMESim与simulink进行联合仿真,结果表明,负载口独立技术在保证系统速度控制特性的前提下,能够进一步提高系统的稳定性能。  相似文献   

10.
挖掘机节能液压控制系统分析与应用   总被引:1,自引:0,他引:1  
深入分析了现代液压挖掘机中三种主流的节能液压系统——负流量控制、正流量控制和负载敏感系统的基本工作原理,重点分析了它们在不同系列挖掘机中的应用;介绍了两种新型挖掘机液压系统的基本原理;分析表明三种典型挖掘节能液压系统都具有一定的节能效果,但工作原理各有不同;新型的挖掘机液压系统虽然还在研发阶段,但具有更好的节能效果及应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号