首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W-ZrC composites without residual WC have been prepared for the first time by reactive infiltration at 1300 °C for 1 h in vacuum using a molten Zr2Cu alloy and a newly designed partially-carburized W powder as raw materials. The as-synthesized composites consist of two major phases of W and ZrC, in which the content of W is 65 vol%. The reaction time needed to produce a fully densified W-ZrC bulk ceramic is distinctly shortened by this means, as contrasted with conventional WC/W or WC preforms. The microstructural evolution during reactive melt infiltration is investigated to obtain a better understanding of reaction mechanisms and mechanical properties of the W-ZrC composites derived by infiltrating Zr2Cu alloy into partially carburized W preforms. The flexural strength, Young's modulus and fracture toughness for the W-ZrC composite are 554 MPa, 339 GPa and 9.7 MPa·m1/2, respectively.  相似文献   

2.
The grain growth inhibitors (GGIs) VC and Cr3C2 doped WCoB-TiC ceramic composites were fabricated by hot-pressing. The microstructure, hardness, transverse rupture strength (TRS), fracture toughness (KIC) and wear-resistance of WCoB-TiC ceramic composites were investigated. The results reveal that the grains can obviously become refined and the densification temperature of WCoB-TiC ceramic composites will be increased due to the VC and Cr3C2. The typical microstructure of WCoB-TiC ceramic composites mainly consist of bright W2CoB2 grains, gray TiC particles, dark TiB2 and pores. WCoB-TiC ceramic composites doped with 0.3 wt% VC and 0.3 wt% Cr3C2 hot-pressing at 1420 °C show the optimum mechanical properties (hardness, TRS and KIC are 92.6 HRA, 1976 MPa and 14.8 MPa m1/2, respectively) and the best dry sliding wear-resistance.  相似文献   

3.
ZrSi2 and SiC are good candidates to improve both sinterability and mechanical properties of ZrB2 ceramics, which were synthesized simultaneously by an in-situ reaction of ZrC and Si additives during the sintering processing in this work. The ZrB2 ceramic composites with different amount of ZrSi2 and SiC were fabricated by reactive spark plasma sintering (RSPS) method. X-ray diffraction, scanning microscopy and Archimedes's method are used to characterize the phase, microstructure and density of the composites. Meanwhile, fracture toughness and flexural strength of the obtained composites were investigated too. It's found that a fully dense composite can be achieved at 1500 °C by SPS. Both fracture toughness and flexural strength of ZrB2 ceramics increased with increasing the concentration of ZrSi2 and SiC additives and reached a maximum of 7.33 ± 0.24 MPa·m1/2 and 471 ± 15 MPa, respectively, with the ZrSi2 + SiC content of 30 wt%.  相似文献   

4.
(Ti,Cr)N nanolayer coatings were deposited on Ti–6Al–4V, 17-4PH and Inconel 718 substrates using cathodic arc physical vapor deposition for improved erosion and corrosion resistance. Coating corrosion performance was highly dependent on the coating thickness and packing factors and correlated with increased chromium content within the (Ti,Cr)N nanolayer coatings. The change in cathode current predominantly affected coating thickness and the bias affected the packing factor. Erosion tests of the coated and uncoated substrates at both 30° and 90° erodent impingement angles were conducted using angular aluminum oxide media at particle velocities up to 145 m/s. Chromium evaporator current and substrate bias were varied to change film stoichiometry and microstructure for erosion performance evaluation. When chromium evaporator current was varied, the increase in chromium content led to an increase in binary CrN phase volume and a decrease in TiN phase volume. The increase in CrN phase volume decreased both hardness and erosion performance at both impingement angles. Lower bias values resulted in better erosion performance. At 30° erodent impingement, all coated samples outperformed the uncoated substrate; whereas, for 90° impingement, only coatings deposited at low bias values (? 25 V, ? 50 V, and ? 100 V) and high Ti:Cr ratios (> 2.4) outperformed the uncoated substrate. The primary coating failure mechanism was microchipping.  相似文献   

5.
Pure tungsten carbide (WC) compacts of about 200 nm grain size were prepared by high pressure and high temperature (HPHT) method. The best property sample with high relative density (99.2%), high Vickers hardness (2925 kg·mm 2) and high fracture toughness (8.9 MPa·m1/2) was obtained in the condition of 1500 °C temperature and 5 GPa pressure. By means of scanning electron microscopy (SEM) and transmission electron microscope (TEM) observations, a large number of twins and stacking faults appeared in sintered samples, and the grain size of sintered samples maintained in the initial range. The XRD patterns of bulk samples reveal that there is a phase transition from WC to W2C with the increasing of temperature. Moreover, the effect of HPHT condition for sintering kinetics, microstructure evolutions, and mechanical properties of the sintered samples were also discussed.  相似文献   

6.
In this study, high pressure and high temperature sintering (HPHT) is adopted in the cermet fabrication process, and the microstructure and mechanical properties of cermets with TiC0.5N0.5–15WC–10Mo2C–5TaC–10Ni–10Co (wt%) sintered under 5 GPa and different temperatures (900–1600 °C) using 6 × 14 MN cubic press are investigated. Results show that the densities of samples can reach up to 7.00 g/cm3. Vickers hardness and fracture toughness of the products are over 1727 HV30 and 7.2 MPa m1/2 respectively. In addition, the sintering results are compared with the data that obtained from commercial samples which produced via conventional sintering technique. The conclusion is that high density and high hardness cermets can be obtained through HPHT sintering.  相似文献   

7.
Tungsten carbide (WC) particles have been in-situ synthesized through the reaction between tungsten particles and carbide particles by spark plasma sintering (SPS). The composites with different WC content were comparatively observed by the techniques of scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM), X-ray diffraction, hardness and pin-to-disc abrasive wear test. The results showed that the formed WC particles were homogenously distributed in the iron matrix with the size of smaller than 25 μm. Additionally, with the increasing of the WC content, the hardness of composites, the microhardness of matrix and the wear resistance increased, but there was no change significantly between 32 vol% WC/Fe composites and 42 vol% WC/Fe composites. The composites possessed excellent wear resistance comparing the specific wear rate determined in the present work to the martensitic wear-resistant steel under the load of 80 N after a sliding distance of ~ 950 m. The specific wear rate of the martensitic wear-resistant steel was a factor of 24 and 48 times higher than WC/Fe composites, when the content of WC was 32 vol% and 42 vol% in WC/Fe composites, respectively. The main wear mechanism was synthetic of abrasion wear and oxidation wear. The wear performance of 32 vol% WC/Fe composites didn't appear to be much different from 42 vol% WC/Fe composites, due to the WC particles in the 42 vol% composites produced stress concentration easily, which could ultimately induce the creak initiation around WC particles in the subsurface (near wear surface) and propagation to wear surface promoting the breakup of surface film.  相似文献   

8.
ZrC-added WC ceramics and SiC-added WC–2 mol% ZrC ceramics were sintered at 1800 °C using a resistance-heated hot-pressing machine. Dense WC ceramics containing 0–1 mol% ZrC and WC–2 mol% ZrC ceramics containing 1–6 mol% SiC were obtained. The reaction products W2C, ZrO2 and ZrC-based solid solutions were formed in the ZrC-added WC ceramics during sintering. The relative amount of W2C reached zero at 2 mol% ZrC, increased in the range of 2–6 mol% ZrC, and decreased again above 6 mol% ZrC. The average WC grain size decreased from 0.49 μm for the WC ceramic to 0.24 μm at 4 mol% ZrC. The SiC addition of 1–2 mol% to the WC–2 mol% ZrC ceramics caused abnormal growth of WC grains. The Vickers hardness of the ZrC-added WC ceramics decreased to 17 GPa at 2 mol% ZrC. The hardness of the SiC-added WC–2 mol% ZrC ceramics increased from 12.4 at 2 mol% SiC to 21.5 GPa at 6 mol% SiC. The fracture toughness of the ZrC-added WC ceramics decreased from 6.2 MPa m0.5 for the WC ceramic to 5.2 MPa m0.5 at 4 mol% added ZrC. The fracture toughness of the WC–2 mol% ZrC ceramics with 6 mol% SiC were relatively high at 6.7 MPa m0.5. The addition of SiC to WC-based ceramics thus improved both hardness and fracture toughness.  相似文献   

9.
In this research, the sliding wear behavior of the hot pressed WC/40 vol%(FeAl-B) composites was investigated at temperatures ranging from the ambient one to those as high as 600 °C. The composites were then compared with hot pressed WC-40 vol%Co and commercial WC-16 vol%Co (H10F) in terms of their mechanical properties and high temperature wear behavior. It was found that the WC/(FeAl-B) composite recorded its maximum wear resistance at all the experimental temperatures, which was higher than that of WC-40 vol%Co at these same temperatures due to the higher hardness of the FeAl-B than that of the Co matrix. Also, WC/(FeAl-B) exhibited a higher wear resistance at lower temperatures and a more proper behavior at higher temperatures than did the commercial WC-16 vol%Co; this was attributed to the higher strength of the FeAl-B matrix at high temperatures. Examination of the wear surfaces revealed that abrasion was the wear mechanism in the commercial WC-16 vol%Co and WC/(FeAl-B) composites at both ambient temperature and 300 °C. At 400 °C, however, the wear mechanism was more of an adhesive one, while binder oxidation was observed at 600 °C.  相似文献   

10.
Owing to improving the mechanical properties of cemented carbides in high speed machining fields, a new composite tool material WC–ZrO2–VC (WZV) is prepared from a mixture of yttria stabilized zirconia (YSZ) and micrometer VC particles by hot-press-sintering in nitrogenous atmosphere. Commercial WC, of which the initial particle sizes are 0.2 μm, 0.4 μm, 0.6 μm and 0.8 μm, is mixed with zirconia and VC powder in aqueous medium by following a ball mill process. The sintering behavior is investigated by isostatic pressing under different sintering temperature. The relative density and bending strength are measured by Archimedes methods and three-point bending mode, respectively. Hardness and fracture toughness are performed by Vickers indentation method. Microstructure of the composite is characterized by scanning electron microscopy (SEM). The correlations between initial particles, densification mechanism, sintering temperature, microstructure and mechanical properties are studied. Experimental results show that maximum densification 99.5% is achieved at 1650 °C and the initial particle size is 0.8 μm. When temperature is 1550 °C and particle size is 0.4 μm, the optimized bending strength (943 MPa) is obtained. The best hardness record is 19.2 GPa when sintering temperature is 1650 and particle size is 0.8 μm. The indention cracks propagate around the grain boundaries and the WC particles fracture, which is associated with particle and microcrack toughening mechanism.  相似文献   

11.
In this paper, a cladding investigation to achieve uniform distribution of WC particles which is crack-free, non-porous and without delamination using a 2 kW IPG Ytterbium doped, continuous wave, fibre laser with 1070 nm wavelength was reported. The single track deposition of a pre-blended powder, 27 wt.% Ti–6Al–4V/73 wt.% WC with a particle size range of 40–120 μm was made on Ti–15V–3Cr–3Sn–3Al substrate using a co-axial nozzle and a standard powder feeding system. The laser cladding samples were subjected to various microstructure examinations, microhardness and micro-abrasion tests. The results revealed that the best clad layers were achieved at an energy density of 111.10 J.mm?2, 15–18.3 mm.s?1 traverse speed; (583–667) mg.s?1 powder feed rate with substrate surface irradiated by laser beam raising its temperature to about 200 °C. This resulted in a uniform distribution of WC within the clad and the results obtained from SEM, EDS and XRD revealed that the WC particles experienced surface melting with some diffusion into the matrix, thus promoting excellent bonding with the matrix and the formation of titanium and tungsten carbides, which include TiC and W2C. The emergence of β-Ti, TiC and W in the clad resulted in enhanced hardness values. The mean value of microhardness in clad matrix is 678 HV when measured from the top of a transverse cross section of the clad sample into the interface region with the Ti substrate which has a hardness of 396 HV. Wear tests indicated the wear resistance of the clad was seven times that of the Ti alloy substrate.  相似文献   

12.
The effect of tungsten carbide (WC) nanoparticles on sinterability and mechanical properties of boron carbide is investigated in this study. Boron carbide, being one of the hardest materials nowadays, has a variety of applications in wear-resistant components such as cutting tools. The low strength and low fracture toughness property of this material is the drawback in its application. Production of high density boron carbide is a problem due to its covalent bonds, low plasticity, surface energy and self-diffusion ratio, high resistance to slide in the grain boundaries etc… Boron carbide samples containing 5,10,20 and 30 vol.% WC were manufactured by firstly cold press and then sintering at three elevated temperatures of 2150 °C, 2200 °C and 2250 °C. It observed that addition of WC nanoparticles results in increase in mechanical properties and density of boron carbide. The highest increase is in the 30 vol.% sample with sintering temperature of 2250 °C were the density is improved by 23%, hardness by 33%, Young's modulus by 53%, and fracture toughness by 38% compared to pure boron carbide.  相似文献   

13.
WC-5 wt%Ni coatings were fabricated onto 3CR12 stainless steel plates using low pressure cold spray deposition. The powder feed rate of the volumetric feeder was varied at 50% (23.6 rpm, 6.8 ± 1 g min 1), 75% (35.7 rpm, 10.1 ± 0.9 g min 1), and 100% (58.9 rpm, 15 ± 1.1 g min 1), and the resulting influence on the mechanical properties of the coatings was investigated. The results were analyzed using a two-parameter Weibull distribution and linear regression analysis. A new parameter to quantify WC particle refinement is proposed. A powder feed rate of 75% produced the best coating properties, achieving a high hardness (2.56 GPa), low porosity (0.55%), high interfacial toughness (12.61 MPa m0.5), high Young's modulus (69.23 GPa), and good fracture toughness (2.81 MPa m0.5). This feed rate appeared to be the optimum deposition parameter to produce dense coatings, achieving a high level of Ni plastic deformation and a high amount of refined WC particles, which are too small to cause significant erosion during impact, and are therefore better able to be retained by the ductile binder.  相似文献   

14.
The influence of Cr3C2 and VC addition on the microstructure and mechanical properties of WC–MgO composites hot-pressed at 1650 °C for 90 min was comprehensively investigated. The grain growth of WC was significantly retarded and the homogeneity of MgO particulate dispersion was effectively improved with the addition of 0.5 wt.% Cr3C2 or 0.5 wt.% VC. The indentation size effect (ISE) on hardness was restrained and the load-independent hardness was increased by doping grain growth inhibitors. Improvements on fracture toughness of hot-pressed samples were also observed due to the refined WC grains and uniformly dispersed MgO particulates. In addition, experimental results demonstrated that Niihara's equation was preferable for estimating the indentation fracture toughness, by comparing the fracture toughness evaluated using the single-edge V-notch beam (SEVNB) method with the values estimated through the Vickers indentation technique.  相似文献   

15.
This article proposed a novel method to disperse WC/ZrO2/VC composite powders so as to attain a perfectly uniform suspension. Besides using conventional dispersing means such as adding dispersant (PEG, polyethylene glycol), mechanical stirring, ultrasonic vibration and ball milling, the temperature adjustment of dispersing-medium distilled water had also been employed. The agglomerating and dispersing mechanisms were analyzed by means of TEM observation of WC/ZrO2/VC composite powders dispersed under five different temperatures, with the results showing that the most uniform dispersion was obtained under the temperature of 100 °C based on the criterion for conglomeration number per unit. The dispersed WC/ZrO2/VC composite powders were dried and consequently sintered by hot-press sintering in nitrogen atmosphere at 1580 °C with pressure of 30 MPa. The testing results of mechanical properties such as relative density, hardness, bending strength and fracture toughness show that the optimal properties are obtained by using the WC/ZrO2/VC composite powders dispersed under 100 °C. The surface crack morphologies of sintered samples are investigated and the results show that crack extended in a more tortuous path for the sample sintered from well-dispersed composite powders.  相似文献   

16.
Densification, microstructure and tribomechanical properties of spark plasma sintering (SPS) processed β-SiAlON (20–40 wt%) bonded WC matrix composites have been reported. All the specimens achieved almost their theoretical density values after SPS at 1750 °C for 25 min under 40 MPa. Incorporation of β-SiAlON in WC significantly altered the densification trend of the composites resembling that of pure β-SiAlON. Microstructural investigations using scanning and transmission electron microscopy revealed formation of principally equiaxed, micron sized WC grains surrounded by the sub-micron to micron sized β-SiAlON phase. The interface region between WC and β-SiAlON was found to be free of any reaction product. Energy dispersive X-ray spectrum confirmed presence of characteristics elements in both WC and β-SiAlON phases in the composite. The maximum Vickers hardness (~18 GPa) and fracture toughness (~6.8 MPa-m0.5) under 10 kgf were obtained for the 30 wt% β-SiAlON/WC composite. These were almost 6% and 50% higher, respectively, than those obtained for pure WC. Indentation size effect (ISE) analyses of some selected specimens indicated moderate sensitivity towards ISE (Meyer's exponent = 1.802) of the 30 wt% β-SiAlON/WC composite and higher true hardness (~15.4 GPa) than those obtained for both the constituent phases. The load dependence of fracture toughness of some selected specimens has also been reported. Unlubricated wear studies under 30 N up to 250 m using ball-on-disc configuration indicated ~46–55 times higher specific wear rate of the β-Si3N4 ball when rubbed against the composites compared to that (~8 × 10−6 mm3/N-m) obtained against pure WC. Formation of compacted flaky tribo-layer within the wear track of the composites was evidenced.  相似文献   

17.
ZrB2–SiC ceramic composites were prepared through water-based gelcasting and pressureless sintering. Effects of the pressureless sintering temperature (1500–2000 °C), heating rate (5–15 °C/min) and soaking time (0.5–2 h) on the relative density, microstructure and mechanical properties of the ZrB2–SiC composites were investigated in detail. A sintering temperature of 2000 °C, a heating rate of 5 °C/min and a soaking time of 2 h were found to be the optimal pressureless sintering procedure. The relative density, flexural strength and fracture toughness of the ZrB2–SiC composite prepared under the optimum condition were 97.8%, 403.1 ± 27.8 MPa and 4.05 ± 0.42 MPa·m1/2, respectively.  相似文献   

18.
TiB2–SiC ceramic composites with different contents of Ni as additive were prepared by the Reactive Hot Pressing (RHP) process at 1700 °C under a pressure of 32 MPa for 30 min. For comparison, a monolithic TiB2 ceramic and TiB2–SiC ceramic composite were also fabricated under the identical temperature, pressure and holding time by the Hot Pressing (HP) process. The effects of the fabrication process and Ni on the microstructure and mechanical properties of the composites were investigated. About 8 vol.% of elongated TiB2 grains with an aspect ratio of 3–6 and a diameter of 0.5–1 μm were produced in the composite prepared by the RHP process. The improvement of the fracture toughness was attributed to the toughening and strengthening effects of SiC particles and the elongated TiB2 grains such as crack deflection. The TiB2–SiC–5 wt.% Ni ceramic composite had the optimum mechanical properties with a flexural strength of 858 ± 87 MPa, fracture toughness of 8.6 ± 0.54 MPa·m1/2 and hardness of 20.2 ± 0.94GPa. The good mechanical properties were ascribed to the relatively fine and homogeneous microstructure and the strengthening effect of Ni. Ni inhibited the anisotropic growth of TiB2.  相似文献   

19.
Although no detailed study on the Cr solubility in WC exists the compilation on the various C–Cr–W phase diagrams [1] suggests this behaviour. In order to prove this and to estimate the diffusivity of Cr in WC we prepared diffusion couples of the type Cr3C2–WC by joining and annealing polished fully dense counterparts of the two carbides (temperature range 1550–1750 °C). After thermal treatment the diffusion couples were cut, polished and investigated by metallography. For the measurement of the diffusion profiles the couples were subjected to WDS-EPMA (Cameca SX 100 microprobe). W, Cr, and C concentration profiles were obtained from line scans performed perpendicular to the interface. The analysis of diffusion couples of WC contacted to other carbides used for doping of hardmetals (VC, TaC, NbC, and TiC) did not yield perceptible solubility of the respective metals in WC with respect to the detection limit of EPMA.From the Cr diffusion profiles a diffusion coefficient of Cr in WC of approximately D = 1.70–2.20 × 10?11cm2/s and an activation energy of EA = 0.75 eV was estimated. In addition the composition of the ternary phase (W,Cr)2C in equilibrium with WC and Cr3C2 could be measured. For example, in couples annealed at 1750 °C the composition reaches from (W0.5Cr0.5)2C (in equilibrium with WC) to (W0.2Cr0.8)2C (in equilibrium with Cr3C2).With the results obtained from the analysis of diffusion couples, the Cr uptake of WC powder as a function of grain size, time and temperature was calculated. Cr saturation in idealised spherical particles of 1 μm occurs only within a few minutes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号