首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
Despite of extremely high theoretical capacity of Si (3579 mAh g−1), Si anodes suffer from pulverization and delamination of the electrodes induced by large volume change during charge/discharge cycles. To address those issues, herein, self-healable and highly stretchable multifunctional binders, polydioxythiophene:polyacrylic acid:phytic acid (PEDOT:PAA: PA, PDPP) that provide Si anodes with self-healability and excellent structural integrity is designed. By utilizing the self-healing binder, Si anodes self-repair cracks and damages of Si anodes generated during cycling. For the first time, it is demonstrated that Si anodes autonomously self-heal artificially created cracks in electrolytes under practical battery operating conditions. Consequently, this self-healable Si anode can still deliver a reversible capacity of 2312 mAh g−1 after 100 cycles with remarkable initial Coulombic efficiency of 94%, which is superior to other reported Si anodes. Moreover, the self-healing binder possesses enhanced Li-ion diffusivity with additional electronic conductivity, providing excellent rate capability with a capacity of 2084 mAh g−1 at a very high C-rate of 5 C.  相似文献   

2.
Alloy anodes have shown great potential for next‐generation lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene‐protected 3D Sb‐based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic‐assembling and subsequent confinement replacement strategy. As binder‐free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g−1 at 100 mA g−1 and 295 mAh g−1 at 1000 mA g−1, and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g−1. As for sodium storage properties, the reversible capacities of 517 mAh g−1 at 50 mA g−1 and 315 mAh g−1 at 1000 mA g−1, the capacity retention of 305 mAh g−1 after 100 cycles at 300 mA g−1 are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high‐stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder‐free anodes for LIBs and SIBs.  相似文献   

3.
With extremely high specific capacity, silicon has attracted enormous interest as a promising anode material for next‐generation lithium‐ion batteries. However, silicon suffers from a large volume variation during charge/discharge cycles, which leads to the pulverization of the silicon and subsequent separation from the conductive additives, eventually resulting in rapid capacity fading and poor cycle life. Here, it is shown that the utilization of a self‐healable supramolecular polymer, which is facilely synthesized by copolymerization of tert‐butyl acrylate and an ureido‐pyrimidinone monomer followed by hydrolysis, can greatly reduce the side effects caused by the volume variation of silicon particles. The obtained polymer is demonstrated to have an excellent self‐healing ability due to its quadruple‐hydrogen‐bonding dynamic interaction. An electrode using this self‐healing supramolecular polymer as binder exhibits an initial discharge capacity as high as 4194 mAh g−1 and a Coulombic efficiency of 86.4%, and maintains a high capacity of 2638 mAh g−1 after 110 cycles, revealing significant improvement of the electrochemical performance in comparison with that of Si anodes using conventional binders. The supramolecular binder can be further applicable for silicon/carbon anodes and therefore this supramolecular strategy may increase the choice of amendable binders to improve the cycle life and energy density of high‐capacity Li‐ion batteries.  相似文献   

4.
Application of Si anodes is hindered by severe capacity fading due to pulverization of Si particles during the large volume changes of Si during charge/discharge and repeated formation of the solid-electrolyte interphase. To address these issues, considerable efforts have been devoted to the development of Si composites with conductive carbons (Si/C composites). However, Si/C composites with high C content inevitably show low volumetric capacity because of low electrode density. For practical applications, the volumetric capacity of a Si/C composite electrode is more important than gravimetric capacity, but volumetric capacity in pressed electrodes is rarely reported. Herein, a novel synthesis strategy is demonstrate for a compact Si nanoparticle/graphene microspherical assembly with interfacial stability and mechanical strength achieved by consecutively formed chemical bonds using 3-aminopropyltriethoxysilane and sucrose. The unpressed electrode (density: 0.71 g cm−3) shows a reversible specific capacity of 1470 mAh g−1 with a high initial coulombic efficiency of 83.7% at a current density of 1 C-rate. The corresponding pressed electrode (density: 1.32 g cm−3) exhibits high reversible volumetric capacity of 1405 mAh cm−3 and gravimetric capacity of 1520 mAh g−1 with a high initial coulombic efficiency of 80.4% and excellent cycling stability of 83% over 100 cycles at 1 C-rate.  相似文献   

5.
High-capacity metal oxides based on non-toxic earth-abundant elements offer unique opportunities as advanced anodes for lithium-ion batteries (LIBs). But they often suffer from large volumetric expansion, particle pulverization, extensive side reactions, and fast degradations during cycling. Here, an easy synthesis method is reported to construct amorphous borate coating network, which stabilizes conversion-type iron oxide anode for the high-energy-density semi-solid-state bipolar LIBs. The nano-borate coated iron oxide anode has high tap density (1.6 g cm−3), high capacity (710 mAh g−1 between 0.5 – 3.0 V, vs Li/Li+), good rate performance (200 mAh g−1 at 50 C), and excellent cycling stability (≈100% capacity resention over 1,000 cycles at 5 A g−1). When paired with high-voltage cathode LiCoO2, it enables Cu current collector-free pouch-type classic and bipolar full cells with high voltage (7.6 V with two stack layers), achieving high energy density (≈350 Wh kg−1), outstanding power density (≈6,700 W kg−1), and extended cycle life (75% capacity retention after 2,000 cycles at 2 C), superior to the state-of-the-art high-power LIBs using Li4Ti5O12 anode. The design and methodology of the nanoscale polyanion-like coating can be applied to other metal oxides electrode materials, as well as other electrochemical materials and devices.  相似文献   

6.
Exploitation of high‐performance anode materials is essential but challenging to the development of sodium‐ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (rGO) to build CoS@rGO composite is described. When evaluated as anode for SIBs, an impressive high specific capacity (540 mAh g?1 at 1 A g?1), excellent rate capability (636 mAh g?1 at 0.1 A g?1 and 306 mAh g?1 at 10 A g?1), and extraordinarily cycle stability (420 mAh g?1 at 1 A g?1 after 1000 cycles) have been demonstrated by CoS@rGO composite for sodium storage. The synergetic effect between the CoS nanoplates and rGO matrix contributes to the enhanced electrochemical performance of the hybrid composite. The results provide a facile approach to fabricate promising anode materials for high‐performance SIBs.  相似文献   

7.
Sodium-ion batteries (SIBs) have attracted tremendous attention as promising low-cost energy storage devices in future grid-scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g−1). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin-derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether-based electrolytes enable robust and stable SEI films. These two merits enable the long-term cycling process of the LC-Bi anode. The LC-Bi composite delivers outstanding sodium-ion storage performance with an ultra-long cycle life of 10 000 cycles at a high current density of 5 A g−1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g−1. Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.  相似文献   

8.
Potassium-ion batteries (PIBs) have become one of the promising candidates for electrochemical energy storage that can provide low-cost and high-performance advantages. The poor cyclability and rate capability of PIBs are due to the intensive structural change of electrode materials during battery operation. Carbon-based materials as anodes have been successfully commercialized in lithium- and sodium-ion batteries but is still struggling in potassium-ion battery field. This work conducts structural engineering strategy to induce anionic defects within the carbon structures to boost the kinetics of PIBs anodes. The carbon framework provides a strong and stable structure to accommodate the volume variation of materials during cycling, and the further phosphorus doping modification is shown to enhance the rate capability. This is found due to the change of the pore size distribution, electronic structures, and hence charge storage mechanism. The optimized electrode in this work shows a high capacity of 175 mAh g−1 at a current density of 0.2 A g−1 and the enhancement of rate performance as the PIB anode (60% capacity retention with the current density increase of 50 times). This work, therefore provides a rational design for guiding future research on carbon-based anodes for PIBs.  相似文献   

9.
Hard carbon is generally accepted as the choice of anode material for sodium-ion batteries. However, integrating high capacity, high initial Coulombic efficiency (ICE), and good durability in hard carbon materials remains challenging. Herein, N-doped hard carbon microspheres (NHCMs) with abundant Na+ adsorption sites and tunable interlayer distance are constructed based on the amine–aldehyde condensation reaction using m-phenylenediamine and formaldehyde as the precursors. The optimized NHCM-1400 with a considerable N content (4.64%) demonstrates a high ICE (87%), high reversible capacity with ideal durability (399 mAh g−1 at 30 mA g−1 and 98.5% retention over 120 cycles), and decent rate capability (297 mAh g−1 at 2000 mA g−1). In situ characterizations elucidate the adsorption–intercalation-filling sodium storage mechanism of NHCMs. Theoretical calculation reveals that the N-doping decreases the Na+ adsorption energy on hard carbon.  相似文献   

10.
Because of its high specific capacity, the silicon–graphite composite (SGC) is regarded as a promising anode for new-generation lithium-ion batteries. However, the frequently employed two-section preparation process, including the modification of silicon seed and followed mixture with graphite, cannot ensure the uniform dispersion of silicon in the graphite matrix, resulting in a stress concentration of aggregated silicon domains and cracks in composite electrodes during cycling. Herein, inspired by powder engineering, the two independent sections are integrated to construct multistage stable silicon–graphite hybrid granules (SGHGs) through wet granulation and carbonization. This method assembles silicon nanoparticles (Si NPs) and graphite and improves compatibility between them, addressing the issue of severe stress concentration caused by uncombined residue of Si NPs. The optimal SGHG prepared with 20% pitch content exhibits a highly reversible specific capacity of 560.0 mAh g−1 at a current density of 200 mA g−1 and a considerable stability retention of 86.1% after 1000 cycles at 1 A g−1. Moreover, as a practical application, the full cell delivers an outstanding capacity retention of 85.7% after 400 cycles at 2 C. The multistage stable structure constructed by simple wet granulation and carbonization provides theoretical guidance for the preparation of commercial SGC anodes.  相似文献   

11.
Metal selenides are considered as one of the most promising anode materials for Na-ion batteries owing to high specific capacity and relatively higher electronic conductivity compared with metal sulfides or oxides. However, such anodes still suffer from huge volume change upon repeated Na+ insertion/extraction processes and simultaneously undergo severe shuttle effect of polyselenides, thus leading to poor electrochemical performance. Herein, a facile chemical-blowing and selenization strategy to fabricate 3D interconnected hybrids built from metal selenides (MSe, M = Mn, Co, Cr, Fe, In, Ni, Zn) nanoparticles encapsulated in in situ formed N-doped carbon foams (NCFs) is reported. Such hybrids not only provide ultrasmall active nanobuilding blocks (≈15 nm), but also efficiently anchor them inside the conductive NCFs, thus enabling both high-efficiency utilization of active components and high structural stability. On the other hand, Cu-driven replacement reaction is utilized for efficiently inhibiting the shuttle effect of polyselenides in ether-based electrolyte. Benefiting from the combined merits of the unique MSe@NCFs and the utilization of the conversion of metal selenides to copper selenides, the as-obtained hybrids (MnSe as an example) exhibit superior rate capability (386.6 mAh g−1 up to 8 A g−1) and excellent cycling stability (347.7 mAh g−1 at 4.0 A g−1 after 1200 cycles).  相似文献   

12.
Hard Carbon have become the most promising anode candidates for sodium-ion batteries, but the poor rate performance and cycle life remain key issues. In this work, N-doped hard carbon with abundant defects and expanded interlayer spacing is constructed by using carboxymethyl cellulose sodium as precursor with the assistance of graphitic carbon nitride. The formation of N-doped nanosheet structure is realized by the C N• or C C• radicals generated through the conversion of nitrile intermediates in the pyrolysis process. This greatly enhances the rate capability (192.8 mAh g−1 at 5.0 A g−1) and ultra-long cycle stability (233.3 mAh g−1 after 2000 cycles at 0.5 A g−1). In situ Raman spectroscopy, ex situ X-ray diffraction and X-ray photoelectron spectroscopy analysis in combination with comprehensive electrochemical characterizations, reveal that the interlayer insertion coordinated quasi-metallic sodium storage in the low potential plateau region and adsorption storage in the high potential sloping region. The first-principles density functional theory calculations further demonstrate strong coordination effect on nitrogen defect sites to capture sodium, especially with pyrrolic N, uncovering the formation mechanism of quasi-metallic bond in the sodium storage. This work provides new insights into the sodium storage mechanism of high-performance carbonaceous materials, and offers new opportunities for better design of hard carbon anode.  相似文献   

13.
With the fast development in flexible electronic technology, power supply devices with high performance, low‐cost, and flexibility are becoming more and more important. Potassium ion batteries (KIBs) have a brilliant prospect for applications benefiting from high voltage, lost cost, as well as similar electrochemistry to lithium ion batteries (LIBs). Although carbon materials have been studied as KIBs anodes, their rate capability and cycling stability are still unsatisfactory due to the large‐size potassium ions. Herein, a nitrogen (N) and phosphorus (P) dual‐doped vertical graphene (N, P‐VG) uniformly grown on carbon cloth (N, P‐VG@CC) is reported as a binder‐free anode for flexible KIBs. With the combined advantages of rich active sites, highly accessible surface, highly conductive network, larger interlayer spacing as well as robust structural stability, this binder‐free N, P‐VG@CC anode exhibits high capacity (344.3 mAh g?1), excellent rate capability (2000 mA g?1; 46.5% capacity retention), and prominent long‐term cycling stability (1000 cycles; 82% capacity retention), outperforming most of the recently reported carbonaceous anodes. Moreover, a potassium ion full cell is successfully assembled on the basis of potassium Prussian blue (KPB)//N, P‐VG@CC, exhibiting a large energy density of 232.5 Wh kg?1 and outstanding cycle stability.  相似文献   

14.
Porous strategies based on nanoengineering successfully mitigate several problems related to volume expansion of alloying anodes. However, practical application of porous alloying anodes is challenging because of limitations such as calendering incompatibility, low mass loading, and excessive usage of nonactive materials, all of which cause a lower volumetric energy density in comparison with conventional graphite anodes. In particular, during calendering, porous structures in alloying-based composites easily collapse under high pressure, attenuating the porous characteristics. Herein, this work proposes a calendering-compatible macroporous architecture for a Si–graphite anode to maximize the volumetric energy density. The anode is composed of an elastic outermost carbon covering, a nonfilling porous structure, and a graphite core. Owing to the lubricative properties of the elastic carbon covering, the macroporous structure coated by the brittle Si nanolayer can withstand high pressure and maintain its porous architecture during electrode calendering. Scalable methods using mechanical agitation and chemical vapor deposition are adopted. The as-prepared composite exhibits excellent electrochemical stability of > 3.6 mAh cm−2, with mitigated electrode expansion. Furthermore, full-cell evaluation shows that the composite achieves higher energy density (932 Wh L−1) and higher specific energy (333 Wh kg−1) with stable cycling than has been reported in previous studies.  相似文献   

15.
Carbonaceous materials have attracted immense interest as anode materials for Na‐ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na‐storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O‐dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g?1 at 100 mA g?1 after 100 cycles and retaining a capacity of 240 mAh g?1 at 2 A g?1 after 2000 cycles. The NOC composite with 3D well‐defined porosity and N,O‐dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O‐dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells.  相似文献   

16.
Constructing heterogeneous nanostructures is an efficient strategy to improve the electrical and ionic conductivity of metal chalcogenide-based anodes. Herein, ZnS/SnO2 quantum dots (QDs) as p-n heterojunctions that are uniformly anchored to reduced graphene oxides (ZnS-SnO2@rGO) are designed and engineered. Combining the merits of fast electron transport via the internal electric field and a greatly shortened Li/Na ion diffusion pathway in the ZnS/SnO2 QDs (3–5 nm), along with the excellent electrical conductivity and good structural stability provided by the rGO matrix, the ZnS-SnO2@rGO anode exhibits enhanced electronic and ionic conductivity, which can be proved by both experiments and theoretical calculations. Consequently, the ZnS-SnO2@rGO anode shows a significantly improved rate performance that simple counterpart composite anodes cannot achieve. Specifically, high reversible specific capacities are achieved for both lithium-ion battery (551 mA h g−1 at 5.0 A g−1, 670 mA h g−1 at 3.0 A g−1 after 1400 cycles) and sodium-ion battery (334 mA h g−1 at 5.0 A g−1, 313 mA h g−1 at 1.0 A g−1 after 400 cycles). Thus, this strategy to build semiconductor metal sulfides/metal oxide heterostructures at the atomic scale may inspire the rational design of metal compounds for high-performance battery applications.  相似文献   

17.
As the new generation of energy storage systems, the flexible battery can effectively broaden the application area and scope of energy storage devices. Flexibility and energy density are the two core evaluation parameters for the flexible battery. In this work, a flexible VS2 material (VS2@CF) is fabricated by growing the VS2 nanosheet arrays on carbon foam (CF) using a simple hydrothermal method. Benefiting from the high electric conductivity and 3D foam structure, VS2@CF shows an excellent rate capability (172.8 mAh g−1 at 5 A g−1) and cycling performance (130.2 mAh g−1 at 1 A g−1 after 1000 cycles) when it served as cathode material for aqueous zinc-ion batteries. More importantly, the quasi-solid-state battery VS2@CF//Zn@CF assembled by the VS2@CF cathode, CF-supported Zn anode, and a self-healing gel electrolyte also exhibits excellent rate capability (261.5 and 149.8 mAh g−1 at 0.2 and 5 A g−1, respectively) and cycle performance with a capacity of 126.6 mAh g−1 after 100 cycles at 1 A g−1. Moreover, the VS2@CF//Zn@CF full cell also shows good flexible and self-healing properties, which can be charged and discharged normally under different bending angles and after being destroyed and then self-healing.  相似文献   

18.
Hard carbons (HCs) with high sloping capacity are considered as the leading candidate anode for sodium-ion batteries (SIBs); nevertheless, achieving basically complete slope-dominated behavior with high rate capability is still a big challenge. Herein, the synthesis of mesoporous carbon nanospheres with highly disordered graphitic domains and MoC nanodots modification via a surface stretching strategy is reported. The MoOx surface coordination layer inhibits the graphitization process at high temperature, thus creating short and wide graphite domains. Meanwhile, the in situ formed MoC nanodots can greatly promote the conductivity of highly disordered carbon. Consequently, MoC@MCNs exhibit an outstanding rate capacity (125 mAh g−1 at 50 A g−1). The “adsorption-filling” mechanism combined with excellent kinetics is also studied based on the short-range graphitic domains to reveal the enhanced slope-dominated capacity. The insight in this work encourages the design of HC anodes with dominated slope capacity toward high-performance SIBs.  相似文献   

19.
Potassium-ion battery represents a promising alternative of conventional lithium-ion batteries in sustainable and grid-scale energy storage. Among various anode materials, elemental phosphorus (P) has been actively pursued owing to the ideal natural abundance, theoretical capacity, and electrode potential. However, the sluggish redox kinetics of elemental P has hindered fast and deep potassiation process toward the formation of final potassiation product (K3P), which leads to inferior reversible capacity and rate performance. Here, it is shown that rational design on black/red P heterostructure can significantly improve K-ion adsorption, injection and immigration, thus for the first time unlocking K3P as the reversible potassiation product for elemental P anodes. Density functional theory calculations reveal the fast adsorption and diffusion kinetics of K-ion at the heterostructure interface, which delivers a highly reversible specific capacity of 923 mAh g−1 at 0.05 A g−1, excellent rate capability (335 mAh g−1 at 1 A g−1), and cycling performance (83.3% capacity retention at 0.8 A g−1 after 300 cycles). These results can unlock other sluggish and irreversible battery chemistries toward sustainable and high-performing energy storage.  相似文献   

20.
Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号