首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D materials and heterostructures have attracted significant attention for a variety of nanoelectronic and optoelectronic applications. At the atomically thin limit, the material characteristics and functionalities are dominated by surface chemistry and interface coupling. Therefore, methods for comprehensively characterizing and precisely controlling surfaces and interfaces are required to realize the full technological potential of 2D materials. Here, the surface and interface properties that govern the performance of 2D materials are introduced. Then the experimental approaches that resolve surface and interface phenomena down to the atomic scale, as well as strategies that allow tuning and optimization of interfacial interactions in van der Waals heterostructures, are systematically reviewed. Finally, a future outlook that delineates the remaining challenges and opportunities for 2D material interface characterization and control is presented.  相似文献   

2.
Organic pollutants including industrial dyes and chemicals and agricultural waste have become a major environmental issue in recent years. As an alternative to simple adsorption, photocatalytic decontamination is an efficient and energy‐saving technology to eliminate these pollutants from water environment, utilizing the energy of external light, and unique function of photocatalysts. Having a large specific surface area, numerous active sites, and varied band structures, 2D nanosheets have exhibited promising applications as an efficient photocatalyst for degrading organic pollutants, particularly hybridization with other functional components. The novel hybridization of 2D nanomaterials with various functional species is summarized systematically with emphasis on their enhanced photocatalytic activities and outstanding performances in environmental remediation. First, the mechanism of photocatalytic degradation is given for discussing the advantages/shortcomings of regular 2D materials and identifying the importance of constructing hybrid 2D photocatalysts. An overview of several types of intensively investigated 2D nanomaterials (i.e., graphene, g‐C3N4, MoS2, WO3, Bi2O3, and BiOX) is then given to indicate their hybridized methodologies, synergistic effect, and improved applications in decontamination of organic dyes and other pollutants. Finally, future research directions are rationally suggested based on the current challenges.  相似文献   

3.
Interfacial thermal boundary resistance (TBR) plays a critical role in near‐junction thermal management of modern electronics. In particular, TBR can dominate heat dissipation and has become increasingly important due to the continuous emergence of novel nanomaterials with promising electronic and thermal applications. A highly anisotropic TBR across a prototype 2D material, i.e., black phosphorus, is reported through a crystal‐orientation‐dependent interfacial transport study. The measurements show that the metal–semiconductor TBR of the cross‐plane interfaces is 241% and 327% as high as that of the armchair and zigzag direction‐oriented interfaces, respectively. Atomistic ab initio calculations are conducted to analyze the anisotropic and temperature‐dependent TBR using density functional theory (DFT)‐derived full phonon dispersion relation and molecular dynamics simulation. The measurement and modeling work reveals that such a highly anisotropic TBR can be attributed to the intrinsic band structure and phonon spectral transmission. Furthermore, it is shown that phonon hopping between different branches is important to modulate the interfacial transport process but with directional preferences. A critical fundamental understanding of interfacial thermal transport and TBR–structure relationships is provided, which may open up new opportunities in developing advanced thermal management technology through the rational control over nanostructures and interfaces.  相似文献   

4.
Reliable transfer processes that enable manipulation of two-dimensional (2D) materials, e.g., transition metal dichalcogenides (TMDCs) and MXenes, from one substrate to another has been a necessity for successful device fabrication. With both mechanical exfoliation and chemical vapor deposition (CVD) widely used, a versatile, clean, deterministic, and yet simple transfer technique is highly needed. To address such need, we developed a transfer method that takes advantage of wettability contrast between interfaces without the use of sacrificial layers or chemical processes. More importantly, a setup was developed to carry out this transfer method with high sample selectivity and fine control of the position and orientation of transferred TMDC crystals, a feature required for fabrication of the devices based on vertical 2D heterostructures. Using both exfoliated and CVD grown materials and subsequent atomic force microscopy (AFM), photoluminescence (PL), confocal Raman and tip enhanced Raman spectroscopy (TERS) characterization, we ascertained the quality of interfaces resulting from the transfer process while preserving excellent 2D material integrity. PL and TERS maps revealed nanometer-scale heterogeneities in the interfaces of fabricated heterostructures, which should enable further perfection of the transfer technique. TERS/TEPL information were employed to identify areas suitable for nanodevice fabrication, making the reported transfer and characterization methods ideal for making high quality assembly of 2D heterostructure more accessible, which should facilitate exploration of vertical 2D heterostructures for applications in electronics, batteries, solar cells, and twistronics.  相似文献   

5.
Heat dissipation is a major limitation of high-performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra-thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra-high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single-layer transition metal dichalcogenides MX2 (MoS2, WSe2, WS2) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate-supported hBN/MX2/hBN heterostructures with varying laser power and temperature, the out-of-plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2 and hBN reaches 74 ± 25 MW m−2 K−1, which is at least ten times higher than the interfacial thermal conductance of MX2 in non-encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra-high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2/hBN structures and shed light on building novel hBN-encapsulated nanoelectronic devices with enhanced thermal management.  相似文献   

6.
2D nanomaterials have various size/morphology‐dependent properties applicable in electronics, optics, sensing, and actuating. However, intensively studied inorganic 2D nanomaterials are frequently hindered to apply in some particular and industrial fields, owing to harsh synthesis, high‐cost, cytotoxicity, and nondegradability. Endeavor has been made to search for biobased 2D nanomaterials with biocompatibility, sustainability, and biodegradability. A method of hydrophobization‐induced interfacial‐assembly is reported to produce an unprecedented type of nanosheets from marine chitin. During this process, two layers of chitin aggregations assemble into nanosheets with high aspect ratio. With super stability and amphiphilicity, these nanosheets have super ability in creating highly stable Pickering emulsions with internal phase up to 83.4% and droplet size up to 140 μm, in analogue to graphene oxide. Combining emulsifying and carbonization can further convert these 2D precursors to carbon nanosheets with thickness as low as ≈3.8 nm. Having biologic origin, conductivity, and dispersibility in various solvents, resultant carbon nanosheets start a new scenario of exploiting marine resources for fully biobased electric devices with sustainability and biodegradability, e.g., supercapacitor, flexible circuits, and electronic sensors. Hybrid films of chitin and carbon nanosheets also offer low‐cost and environment‐friendly alternative of conductive components desirable in green electronics, wearable electronics, biodegradable circuits, and biologic devices.  相似文献   

7.
The unique properties of hybrid heterostructures have motivated the integration of two or more different types of nanomaterials into a single optoelectronic device structure. Despite the promising features of organic semiconductors, such as their acceptable optoelectronic properties, availability of low‐cost processes for their fabrication, and flexibility, further optimization of both material properties and device performances remains to be achieved. With the emergence of atomically thin 2D materials, they have been integrated with conventional organic semiconductors to form multidimensional heterostructures that overcome the present limitations and provide further opportunities in the field of optoelectronics. Herein, a comprehensive review of emerging 2D–organic heterostructures—from their synthesis and fabrication to their state‐of‐the‐art optoelectronic applications—is presented. Future challenges and opportunities associated with these heterostructures are highlighted.  相似文献   

8.
van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on‐demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self‐assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design.  相似文献   

9.
As one of the most widely discussed fields, the assembly of nanomaterials has always been extensively studied. However, its inverse process, namely disassembly, is still limited in the ambit of biomolecules. Specifically, in the emerging 2D research field, disassembly still remains unexplored. Inspired by the disassembly of DNA molecules via breaking intermolecular hydrogen bonds, the disassembly of 2D vertical heterostructures (2DVHs) is first achieved through the weakening of the interlayer van der Waals interactions. As a demonstration, ReS2/WS2 VHs is successfully disassembled into individual building blocks. Density functional theory calculations are performed to study the disassembly of the 2DVHs, which simulate that 2DVHs are first activated by the disassembly promoters and then disassembled with weakened interlayer van der Waals interactions. Such a disassembly process demonstrates that it has great potential to be expanded as a general strategy to achieve the disassembly of other 2D superstructures.  相似文献   

10.
The unique structural and electronic properties of 2D materials, including the metal and metal‐free ones, have prompted intense exploration in the search for new catalysts. The construction of different heterostructures based on 2D materials offers great opportunities for boosting the catalytic activity in electo(photo)chemical reactions. Particularly, the merits resulting from the synergism of the constituent components and the fascinating properties at the interface are tremendously interesting. This scenario has now become the state‐of‐the‐art point in the development of active catalysts for assisting energy conversion reactions including water splitting and CO2 reduction. Here, starting from the theoretical background of the fundamental concepts, the progressive developments in the design and applications of heterostructures based on 2D materials are traced. Furthermore, a personal perspective on the exploration of 2D heterostructures for further potential application in catalysis is offered.  相似文献   

11.
Preparation of holey, single-crystal, 2D nanomaterials containing in-plane nanosized pores is very appealing for the environment and energy-related applications. Herein, an in situ topological transformation is showcased of 2D layered double hydroxides (LDHs) allows scalable synthesis of holey, single-crystal 2D transition metal oxides (TMOs) nanomesh of ultrathin thickness. As-synthesized 2D Co/NiO-2 nanomesh delivers superior photocatalytic CO2-syngas conversion efficiency (i.e., VCO of 32460 µmol h−1 g−1 CO and V H 2 ${V_{{{\rm{H}}_2}}}$ of 17840 µmol h−1 g−1 H2), with VCO about 7.08 and 2.53 times that of NiO and 2D Co/NiO-1 nanomesh containing larger pore size, respectively. As revealed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), the high performance of Co/NiO-2 nanomesh primarily originates from the edge sites of nanopores, which carry more defect structures (e.g., atomic steps or vacancies) than basal plane for CO2 adsorption, and from its single-crystal structure adept at charge transport. Theoretical calculation shows the topological transformation from 2D hydroxide to holey 2D oxide can be achieved, probably since the trace Co dopant induces a lattice distortion and thus a sharp decrease of the dehydration energy of hydroxide precursor. The findings can advance the design of intriguing holey 2D materials with well-defined geometric and electronic properties.  相似文献   

12.
Nanomaterial shapes can have profound effects on material properties,and therefore offer an efficient way to improve the performances of designed materials and devices.The rational fabrication of multidimensional architectures such as one dimensional (1D)-two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality.However,it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures.Here,we present a new solventmediated,surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures.The as-obtained CdS NW/CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components.The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes,which achieved a considerable photocurrent density of 2.85 mA.cm-2 at 0 V vs.the reversible hydrogen electrode (RHE) without use of any co-catalysts.This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell.Both the multidimensional nature and type Ⅱ band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalytic and photoelectrochemical activity.The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures,but also documents the development of highly efficient energy conversion catalysts.  相似文献   

13.
Photocarrier recombination remains a big barrier for the improvement of solar energy conversion efficiency. For 2D materials, construction of heterostructures represents an efficient strategy to promote photoexcited carrier separation via an internal electric field at the heterointerface. However, due to the difficulty in seeking two components with suitable crystal lattice mismatch, most of the current 2D heterostructures are vertical heterostructures and the exploration of 2D lateral heterostructures is scarce and limited. Here, lateral epitaxial heterostructures of BiOCl @ Bi2O3 at the atomic level are fabricated via sonicating-assisted etching of Cl in BiOCl. This unique lateral heterostructure expedites photoexcited charge separation and transportation through the internal electric field induced by chemical bonding at the lateral interface. As a result, the lateral BiOCl @ Bi2O3 heterostructure demonstrates superior CO2 photoreduction properties with a CO yield rate of about 30 µmol g−1 h−1 under visible light illumination. The strategy to fabricate lateral epitaxial heterostructures in this work is expected to provide inspiration for preparing other 2D lateral heterostructures used in optoelectronic devices, energy conversion, and storage fields.  相似文献   

14.
P Sutter  R Cortes  J Lahiri  E Sutter 《Nano letters》2012,12(9):4869-4874
The ability to control the formation of interfaces between different materials has become one of the foundations of modern materials science. With the advent of two-dimensional (2D) crystals, low-dimensional equivalents of conventional interfaces can be envisioned: line boundaries separating different materials integrated in a single 2D sheet. Graphene and hexagonal boron nitride offer an attractive system from which to build such 2D heterostructures. They are isostructural, nearly lattice-matched, and isoelectronic, yet their different band structures promise interesting functional properties arising from their integration. Here, we use a combination of in situ microscopy techniques to study the growth and interface formation of monolayer graphene-boron nitride heterostructures on ruthenium. In a sequential chemical vapor deposition process, boron nitride grows preferentially at the edges of existing monolayer graphene domains, which can be exploited for synthesizing continuous 2D membranes of graphene embedded in boron nitride. High-temperature growth leads to intermixing near the interface, similar to interfacial alloying in conventional heterostructures. Using real-time microscopy, we identify processes that eliminate this intermixing and thus pave the way to graphene-boron nitride heterostructures with atomically sharp interfaces.  相似文献   

15.
Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble‐metal‐based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot‐injection method, the heating‐up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD‐based composites as catalysts is discussed.  相似文献   

16.
Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic‐scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage.  相似文献   

17.
2D metal‐semiconductor heterostructures based on transition metal dichalcogenides (TMDs) are considered as intriguing building blocks for various fields, such as contact engineering and high‐frequency devices. Although, a series of p–n junctions utilizing semiconducting TMDs have been constructed hitherto, the realization of such a scheme using 2D metallic analogs has not been reported. Here, the synthesis of uniform monolayer metallic NbS2 on sapphire substrate with domain size reaching to a millimeter scale via a facile chemical vapor deposition (CVD) route is demonstrated. More importantly, the epitaxial growth of NbS2‐WS2 lateral metal‐semiconductor heterostructures via a “two‐step” CVD method is realized. Both the lateral and vertical NbS2‐WS2 heterostructures are achieved here. Transmission electron microscopy studies reveal a clear chemical modulation with distinct interfaces. Raman and photoluminescence maps confirm the precisely controlled spatial modulation of the as‐grown NbS2‐WS2 heterostructures. The existence of the NbS2‐WS2 heterostructures is further manifested by electrical transport measurements. This work broadens the horizon of the in situ synthesis of TMD‐based heterostructures and enlightens the possibility of applications based on 2D metal‐semiconductor heterostructures.  相似文献   

18.
Despite the existence of numerous photocatalyst heterostructures, their separation efficiency and charge flow precision remain low due to the poor study on interfacial properties. The photocatalysts with confined defects can effectively control the photogenerated carrier migration, but the metastability of such defects considerably decreases the photocatalyst stability. Meanwhile, the introduction of defective region can increase the coordinative unsaturation and delocalize local electrons to promote their interactions with the molecules/ions in that region. The selective growth of modulated heterogeneous interface by defect-induced strategy may not only increase the stability of defective structures, but also enhance the migration of interfacial charges. Using this method, photocatalytic heterostructures with low contact resistances and intimate interfaces are constructed to achieve the optimal charge migration in terms of efficiency and accuracy. In this work, the point, linear, and planar heterogeneous interfaces and related defect engineering techniques are discussed. Particularly, it is focused on the external, defect-induced interfacial heterogeneities with various spatial and dimensional configurations, which exhibit modulated and controllable interfacial properties. Furthermore, the main aspects of fabricating photocatalyst heterostructures by the defect-induced strategy, including the i) controllable generation of defects, ii) advanced characterization methods, and iii) elaborate construction of the minimal interface, are described.  相似文献   

19.
Rapid progress in the synthesis and fundamental understanding of 1D and 2D materials have solicited the incorporation of these nanomaterials into sensor architectures, especially field effect transistors (FETs), for the monitoring of gas and vapor in environmental, food quality, and healthcare applications. Yet, several challenges have remained unaddressed toward the fabrication of 1D and 2D FET gas sensors for real-field applications, which are related to properties, synthesis, and integration of 1D and 2D materials into the transistor architecture. This review paper encompasses the whole assortment of 1D—i.e., metal oxide semiconductors (MOXs), silicon nanowires (SiNWs), carbon nanotubes (CNTs)—and 2D—i.e., graphene, transition metal dichalcogenides (TMD), phosphorene—materials used in FET gas sensors, critically dissecting how the material synthesis, surface functionalization, and transistor fabrication impact on electrical versus sensing properties of these devices. Eventually, pros and cons of 1D and 2D FETs for gas and vapor sensing applications are discussed, pointing out weakness and highlighting future directions.  相似文献   

20.
Rational design of 2D materials is crucial for the realization of their profound implications in energy and environmental fields. The past decade has witnessed significant developments in 2D material research, yet a number of critical challenges remain for real-world applications. Nanoscale assembly, precise control over the orientational and positional ordering, and complex interfaces among 2D layers are essential for the continued progress of 2D materials, especially for energy storage and conversion and environmental remediation. Herein, recent progress, the status, future prospects, and challenges associated with nanoscopic assembly of 2D materials are highlighted, specifically targeting energy and environmental applications. Geometric dimensional diversity of 2D material assembly is focused on, based on novel assembly mechanisms, including 1D fibers from the colloidal liquid crystalline phase, 2D films by interfacial tension (Marangoni effect), and 3D nanoarchitecture assembly by electrochemical processes. Relevant critical advantages of 2D material assembly are highlighted for application fields, including secondary batteries, supercapacitors, catalysts, gas sensors, desalination, and water decontamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号