首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Electroreduction of nitrite (NO2) to valuable ammonia (NH3) offers a sustainable and green approach for NH3 synthesis. Here, a Cu3P@TiO2 heterostructure is rationally constructed as an active catalyst for selective NO2-to-NH3 electroreduction, with rich nanosized Cu3P anchored on a TiO2 nanoribbon array on Ti plate (Cu3P@TiO2/TP). When performed in the 0.1 m NaOH with 0.1 m NaNO2, the Cu3P@TiO2/TP electrode obtains a large NH3 yield of 1583.4 µmol h−1 cm−2 and a high Faradaic efficiency of 97.1%. More importantly, Cu3P@TiO2/TP also delivers remarkable long-term stability for 50 h electrolysis. Theoretical calculations indicate that intermediate adsorption/conversion processes on Cu3P@TiO2 interfaces are synergistically optimized, substantially facilitating the conversion of NO2-to-NH3.  相似文献   

3.
Ammonia (NH3) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3) reduction reaction (NO3RR) is being explored as a promising strategy for green to synthesize industrial-scale NH3, which has nonetheless involved complex multi-reaction process. This work presents a Pd-doped Co3O4 nanoarray on titanium mesh (Pd-Co3O4/TM) electrode for highly efficient and selective electrocatalytic NO3RR to NH3 at low onset potential. The well-designed Pd-Co3O4/TM delivers a large NH3 yield of 745.6 µmol h−1 cm−2 and an extremely high Faradaic efficiency (FE) of 98.7% at −0.3 V with strong stability. These calculations further indicate that the doping Co3O4 with Pd improves the adsorption characteristic of Pd-Co3O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn-NO3 battery realizes a power density of 3.9 mW cm−2 and an excellent FE of 98.8% for NH3.  相似文献   

4.
Electrochemical nitrate (NO3) reduction to ammonia (NH3) offers a promising pathway to recover NO3 pollutants from industrial wastewater that can balance the nitrogen cycle and sustainable green NH3 production. However, the efficiency of electrocatalytic NO3 reduction to NH3 synthesis remains low for most of electrocatalysts due to complex reaction processes and severe hydrogen precipitation reaction. Herein, high performance of nitrate reduction reaction (NO3RR) is demonstrated on self-supported Pd nanorod arrays in porous nickel framework foam (Pd/NF). It provides a lot of active sites for H* adsorption and NO3 activation leading to a remarkable NH3 yield rate of 1.52 mmol cm−2 h−1 and a Faradaic efficiency of 78% at −1.4 V versus RHE. Notably, it maintains a high NH3 yield rate over 50 cycles in 25 h showing good stability. Remarkably, large-area Pd/NF electrode (25 cm2) shows a NH3 yield of 174.25 mg h−1, be promising candidate for large-area device for industrial application. In situ FTIR spectroscopy and density functional theory calculations analysis confirm that the enrichment effect of Pd nanorods encourages the adsorption of H species for ammonia synthesis following a hydrogenation mechanism. This work brings a useful strategy for designing NO3RR catalysts of nanorod arrays with customizable compositions.  相似文献   

5.
Electrochemical dinitrogen (N2) reduction to ammonia (NH3) coupled with methanol electro-oxidation is presented in the current work. Here, methanol oxidation reaction (MOR) is proposed as an alternative anode reaction to oxygen evolution reaction (OER) to accomplish electrons-induced reduction of N2 to NH3 at cathode and oxidation of methanol at anode in alkaline media thereby reducing the overall cell voltage for ammonia production. Cobalt pyrophosphate micro-flowers assembled by nanosheets are synthesized via a surfactant-assisted sonochemical approach. By virtue of structural and morphological advantages, the maximum Faradaic efficiency of 43.37% and NH3 yield rate of 159.6 µg h−1 mgca−1 is achieved at a potential of −0.2 V versus RHE. The proposed catalyst is shown to also exhibit a very high activity (100 mA mg−1 at 1.48 V), durability (2 h) and production of value-added formic acid at anode (2.78 µmol h−1 mgcat−1 and F.E. of 59.2%). The overall NH3 synthesis is achieved at a reduced cell voltage of 1.6 V (200 mV less than NRR-OER coupled NH3 synthesis) when OER at anode is replaced with MOR and a high NH3 yield rate of 95.2 µg h−1 mgcat−1 and HCOOH formation rate of 2.53 µmol h−1 mg−1 are witnessed under full-cell conditions.  相似文献   

6.
Although the electrocatalytic nitrate reduction reaction (NO3RR) is an attractive NH3 synthesis route, it suffers from low yield due to the lack of efficient catalysts. Here, this work reports a novel grain boundary (GB)-rich Sn-Cu catalyst, derived from in situ electroreduction of Sn-doped CuO nanoflower, for effectively electrochemical converting NO3 to NH3. The optimized Sn1%-Cu electrode achieves a high NH3 yield rate of 1.98 mmol h−1 cm−2 with an industrial-level current density of −425 mA cm−2 at −0.55 V versus a reversible hydrogen electrode (RHE) and a maximum Faradaic efficiency of 98.2% at −0.51 V versus RHE, outperforming the pure Cu electrode. In situ Raman and attenuated total reflection Fourier transform infrared spectroscopies reveal the reaction pathway of NO3RR to NH3 by monitoring the adsorption property of reaction intermediates. Density functional theory calculations clarify that the high-density GB active sites and the competitive hydrogen evolution reaction (HER) suppression induced by Sn doping synergistically promote highly active and selective NH3 synthesis from NO3RR. This work paves an avenue for efficient NH3 synthesis over Cu catalyst by in situ reconstruction of GB sites with heteroatom doping.  相似文献   

7.
Electrochemical nitrate (NO3) reduction reaction (NO3RR) is a potential sustainable route for large-scale ambient ammonia (NH3) synthesis and regulating the nitrogen cycle. However, as this reaction involves multi-electron transfer steps, it urgently needs efficient electrocatalysts on promoting NH3 selectivity. Herein, a rational design of Co nanoparticles anchored on TiO2 nanobelt array on titanium plate (Co@TiO2/TP) is presented as a high-efficiency electrocatalyst for NO3RR. Density theory calculations demonstrate that the constructed Schottky heterostructures coupling metallic Co with semiconductor TiO2 develop a built-in electric field, which can accelerate the rate determining step and facilitate NO3 adsorption, ensuring the selective conversion to NH3. Expectantly, the Co@TiO2/TP electrocatalyst attains an excellent Faradaic efficiency of 96.7% and a high NH3 yield of 800.0 µmol h−1 cm−2 under neutral solution. More importantly, Co@TiO2/TP heterostructure catalyst also presents a remarkable stability in 50-h electrolysis test.  相似文献   

8.
Single atoms are superior electrocatalysts having high atomic utilization and amazing activity for water oxidation and splitting. Herein, this work reports a thermal reduction method to introduce high-valence iridium (Ir) single atoms into bimetal phosphide (FeNiP) nanoparticles toward high-efficiency oxygen evolution reaction (OER) and overall water splitting. The presence of high-valence single Ir atoms (Ir4+) and their synergistic interaction with Ni3+ species as well as the disproportionation of Ni3+ assisted by Fe collectively contribute to the exceptional OER performance. In specific, at appropriate Ir/Ni and Fe/Ni ratios, the as-prepared Ir-doped FeNiP (Ir25-Fe16Ni100P64) nanoparticles at a mass loading of only 35 µg cm−2 show the overpotential as low as 232 mV at 10 mA cm−2 and activity as high as 1.86 A mg−1 at 1.5 V versus RHE for OER in 1.0 m KOH. Computational simulations confirm the vital role of high-valence Ir to weaken the adsorption of OER intermediates, favorable for accelerating OER kinetics. Impressively, a Pt/C||Ir25-Fe16Ni100P64 two-electrode alkaline electrolyzer affords a current density of 10 mA cm−2 at a low cell voltage of 1.42 V, along with satisfied stability. An AA battery with a nominal voltage of 1.5 V can drive overall water splitting with obvious bubbles released.  相似文献   

9.
The electrosynthesis of recyclable ammonia (NH3) from nitrate under ambient conditions is of great importance but still full of challenges for practical application. Herein, an efficient catalyst design strategy is developed that can engineer the surface microenvironment of a PdCu hollow (PdCu-H) catalyst to confine the intermediates and thus promote selective NH3 electrosynthesis from nitrate. The hollow nanoparticles are synthesized by in situ reduction and nucleation of PdCu nanocrystals along a self-assembled micelle of a well-designed surfactant. The PdCu-H catalyst shows a structure-dependent selectivity toward the NH3 product during the nitrate reduction reaction (NO3RR) electrocatalysis, enabling a high NH3 Faradaic efficiency of 87.3% and a remarkable NH3 yield rate of 0.551 mmol h−1 mg−1 at -0.30 V (vs reversible hydrogen electrode). Moreover, this PdCu-H catalyst delivers high electrochemical performance in the rechargeable zinc-NO3 battery. These results provide a promising design strategy to tune catalytic selectivity for efficient electrosynthesis of renewable NH3 and feedstocks.  相似文献   

10.
The influence of polymer modifier chain length on the thermal conductivity of polyamide 6/graphene (GA) nanocomposites, including through-plane (λz) and in-plane (λx) directions were investigated. Here, three chain lengths of double amino-terminated polyethylene glycol (NH2–PEG–NH2) were used to covalently functionalize graphene with graphene content of 5.0 wt%. Results showed that λz was enhanced with the chain length of NH2–PEG–NH2 increased, but λx reached a maximum value at a certain chain length of NH2–PEG–NH2. The maximum λz and λx of GA are 0.406 W m−1 K−1 and 9.710 W m−1 K−1, respectively. This study serves as a foundation for further research on the thermal conductive property of graphene nanocomposites using different chain lengths of polymer modifier to improve the λz and λx of the thermal conductive materials.  相似文献   

11.
An n-n type heterojunction comprising with Cu N and B N dual active sites is synthesized via in situ growth of a conductive metal–organic framework (MOF) [Cu3(HITP)2] (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) on hexagonal boron nitride (h-BN) nanosheets (hereafter denoted as Cu3(HITP)2@h-BN) for the electrocatalytic nitrogen reduction reaction (eNRR). The optimized Cu3(HITP)2@h-BN shows the outstanding eNRR performance with the NH3 production of 146.2 µg h−1 mgcat−1 and the Faraday efficiency of 42.5% due to high porosity, abundant oxygen vacancies, and Cu N/B N dual active sites. The construction of the n-n heterojunction efficiently modulates the state density of active metal sites toward the Fermi level, facilitating the charge transfer at the interface between the catalyst and reactant intermediates. Additionally, the pathway of NH3 production catalyzed by the Cu3(HITP)2@h-BN heterojunction is illustrated by in situ FT-IR spectroscopy and density functional theory calculation. This work presents an alternative approach to design advanced electrocatalysts based on conductive MOFs.  相似文献   

12.
Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3O4 nanosheets (Co3O4-NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3RR. As the result, the Co3O4-NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h−1 mgcat−1) toward nitrate-to-ammonia. Importantly, the Co3O4-NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h−1 mgcat−1. This study reveals the structure–activity relationship of heterostructure and LSPR-promotion effect toward NO3RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.  相似文献   

13.
Synthesis of green ammonia (NH3) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO2 nanoarray supported on Ti plate (TiO2−x/TP) behaves as an efficient catalyst for NO reduction to NH3. In 0.2 m phosphate-buffered electrolyte, such TiO2−x/TP shows competitive electrocatalytic NH3 synthesis activity with a maximum NH3 yield of 1233.2 µg h−1 cm−2 and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO2−x (101) compared to perfect TiO2 (101). And the low energy barrier of 0.7 eV on TiO2−x (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO2−x/TP and Zn plate to obtain an NH3 yield of 241.7 µg h−1 cm−2 while providing a peak power density of 0.84 mW cm−2.  相似文献   

14.
This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN),  NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h−1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2GCN significantly decreases the activation energy barrier for PO ring-opening from 50–60 to 4.903 kcal mol−1. Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while  NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h−1 of CO2 with PC production of 10.2 ton h−1. Techno-economic assessment profit from Mo2GCN is estimated to be 60.39 million USD year−1 at a catalyst loss rate of 0.01 wt% h−1.  相似文献   

15.
The ambient electrochemical N2 reduction reaction (NRR) is a future approach for the artificial NH3 synthesis to overcome the problems of high-energy consumption and environmental pollution by Haber–Bosch technology. However, the challenge of N2 activation on a catalyst surface and the competitive hydrogen evolution reaction make the current NRR unsatisfied. Herein, this work demonstrates that NbB2 nanoflakes (NFs) exhibit excellent selectivity and durability in NRR, which produces NH3 with a production rate of 30.5 µg h−1 mgcat−1 and a super-high Faraday efficiency (FE) of 40.2%. The high-selective NH3 production is attributed to the large amount of active B vacancies on the surface of NbB2 NFs. Density functional theory calculations suggest that the multiple atomic adsorption of N2 on both unsaturated Nb and B atoms results in a significantly stretched N2 molecule. The weakened NN triple bonds are easier to be broken for a biased NH3 production. The diatomic catalysis is a future approach for NRR as it shows a special N2 adsorption mode that can be well engineered.  相似文献   

16.
Transition metal oxide electrode materials for supercapacitors suffer from poor electrical conductivity and stability, which are the research focus of the energy storage field. Herein, multicomponent hybridization Ni-Cu oxide (NCO-Ar/H2-10) electrode enriched with oxygen vacancy and high electrical conductivity including the Cu0.2Ni0.8O, Cu2O and CuO is prepared by introducing Cu element into Ni metal oxide with hydrothermal, annealing, and plasma treatment. The NCO-Ar/H2-10 electrode exhibits high specific capacity (1524 F g−1 at 3 A g−1), good rate performance (72%) and outstanding cyclic stability (109% after 40,000 cycles). The NCO-Ar/H2-10//AC asymmetric supercapacitor (ASC) achieves high energy density of 48.6 Wh kg−1 at 799.6 W kg−1 while exhibiting good cycle life (117.5% after 10,000 cycles). The excellent electrochemical performance mainly comes from the round-trip valence change of Cu+/Cu2+ in the multicomponent hybridization enhance the surface capacitance during the redox process, and the change of electronic microstructure triggered by a large number of oxygen vacancies reduce the adsorption energy of OH ions of thin nanosheet with crack of surface edge, ensuring electron and ion-transport processes and remitting the structural collapse of material. This work provides a new strategy for improving the cycling stability of transition metal oxide electrode materials.  相似文献   

17.
The charge transfer within heterojunction is crucial for the efficiency and stability of photocatalyst for overall water splitting (OWS). Herein, InVO4 nanosheets have been employed as a support for the lateral epitaxial growth of ZnIn2S4 nanosheets to produce hierarchical InVO4@ZnIn2S4 (InVZ) heterojunctions. The distinct branching heterostructure facilitates active site exposure and mass transfer, further boosting the participation of ZnIn2S4 and InVO4 for proton reduction and water oxidation, respectively. The unique Z-scheme modulated charge transfer, visualized by simulation and in situ analysis, has been proved to promote the spatial separation of photoexcited charges and strengthen the anti-photocorrosion capability of InVZ. The optimized InVZ heterojunction presents improved OWS (153.3 µmol h−1 g−1 for H2 and 76.9 µmol h−1 g−1 for O2) and competitive H2 production (21090 µmol h−1 g−1). Even after 20 times (100 h) of cycle experiment, it still holds more than 88% OWS activity and a complete structure.  相似文献   

18.
The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+, leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal–organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2-MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g−1) compared to NH2-MIL-125 (0.49 mmol g−1). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+, and the oxidation-recovery process is reversible.  相似文献   

19.
Three CoFe-bimetallic oxides with different compositions (termed as CoFeOx-A/N/H) are prepared by thermally treating metal-organic-framework (MOF) precursors under different atmospheres (air, N2, and NaBH4/N2), respectively. With the aid of vast oxygen vacancies (Ov), cobalt at tetrahedral sites (Co2+(Th)) in spinel Co3O4 is diffused into interstitial octahedral sites (Oh) to form rocksalt CoO and ternary oxide CoFe2O4 has been induced to give the unique defective CoO/CoFe2O4 heterostructure. The resultant CoFeOx-H exhibits superb electrocatalytic activity toward water oxidation: overpotential at 10 mA cm−2 is 192 mV, which is 122 mV smaller than that of CoFeOx-A. The smaller Tafel slope (42.53 mV dec−1) and higher turnover frequency (785.5 h−1) suggest fast reaction kinetics. X-ray absorption spectroscopy, ex situ characterizations, and theoretical calculations reveal that defect engineering effectively tunes the electronic configuration to a more active state, resulting in the greatly decreased binding energy of oxo intermediates, and consequently much lower catalytic overpotential. Moreover, the construction of hetero-interface in CoFeOx-H can provide rich active sites and promote efficient electron transfer. This work may shed light on a comprehensive understanding of the modulation of electron configuration of bimetallic oxides and inspire the smart design of high-performance electrocatalysts.  相似文献   

20.
Electrochemical nitrate reduction reaction (NO3RR) is a promising alternative technique for NH3 generation toward the energy-consuming Haber-Bosch process. Nevertheless, it remains hindered by the competitive hydrogen evolution reaction (HER). Herein, the piezoelectric effect of electron-rich BaTiO3 with oxygen vacancies is introduced to promote NO3RR performance. Combining with metal particles (Ru, Pd and Pt), the catalyst achieves a maximal Faradaic efficiency of 95.3% and NH3 yield rate of 6.87 mg h−1 mgcat.−1. Upon piezoelectricity, the interface between metal nanoparticles and BaTiO3 is effectively modulated from Schottky contact to ohmic contact, which leads to unobstructed electron transfer. Abundant hydrogen radicals (·H) can be then produced from the collision between plentiful electrons and polar water molecules adsorbed on the polar surface. Such ·H can significantly facilitate the hydrogenation of reaction intermediates in NO3RR. Meanwhile, this process suppresses the Volmer-Heyrovsky step, therefore inhibiting the HER within a wide range of external potential. This work suggests a new strategy for promoting the performance of multi-electron-involved catalytic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号