首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过溶液法制备了花状结构的Sb_2O_3(简称FL-Sb_2O_3)赝电容正极材料,研究了水浴温度对合成结果的影响,用水热法和煅烧法对材料进行了进一步处理。使用X射线衍射仪、扫描电子显微镜及电化学工作站等,对部分Sb_2O_3的形貌结构和性能进行了研究和测试。研究结果表明:水浴温度对材料形貌的形成有较大影响,其中水浴温度为30 ℃时得到的FL-Sb_2O_3形貌结构最佳,它拥有较高的比容量和电导率。在0.5 A/g的电流密度下,该材料的比容量达到580 F/g,且在5 A/g的电流密度下比容量为383 F/g,表明材料的倍率性能良好。在2 A/g的电流密度下经过2000次循环后,该材料的容量保持率为91.6%。。  相似文献   

2.
采用一种改进的方法制备了类石墨烯的Ti_3C_2T_x二维材料。首先采用氢氟酸刻蚀Ti_3AlC_2,然后向插层溶剂二甲亚砜中添加表面活性剂十六烷基三甲基溴化铵协助二甲亚砜共同插层,最后经超声处理制备Ti_3C_2T_x。XRD测试表明,由于表面活性剂的协助插层作用,插层剂分子更容易进入Ti_3C_2T_x层间,显著增加其层间距,减小层间的相互作用力,便于其剥离。氮气吸脱实验证实该方法制备的Ti_3C_2T_x具有更高的比表面积和孔容。电化学测试表明,由制备的Ti_3C_2T_x组装成的对称性电容器具有更高的比电容,在0.5 A/g电流密度下的比电容达75.0 F/g,当充电电流增加至4 A/g时,其电容维持在57.0 F/g。在1 A/g的电流密度下,经过2 500次的充放电循环后,制备的Ti_3C_2T_x材料的比电容为61.5 F/g,循化稳定率达87.0%。  相似文献   

3.
采用水热法一步制备了氧化铁(Fe_2O_3)/碳纳米管复合材料,并对制得的Fe_2O_3/碳纳米管复合材料的形貌、结构进行了表征。对Fe_2O_3/碳纳米管复合材料的循环伏安特性和电化学性能进行了研究。七水合硫酸亚铁(FeSO4·7H2O)用量为200mg制得的Fe_2O_3/碳纳米管复合材料,在放电电流密度为0.5A/g条件下,Fe_2O_3/碳纳米管复合材料的比电容高达618F/g,在500次循环之后电容保持率可达56.8%。  相似文献   

4.
《功能材料》2021,52(6)
采用溶剂热法制得Fe_3O_4纳米片层垂直均匀生长在石墨烯表面的Fe_3O_4/石墨烯复合材料,并用XRD、BET、SEM、TEM等表征手段对复合材料的结构进行表征,用CV和GCD等方法对复合材料在KOH、Na_2SO_3和Na_2SO_4水溶液中的电化学性能进行测试,分析考察了电解质种类和浓度对Fe_3O_4/石墨烯复合材料电化学性能的影响。结果显示,不同种类的电解质具有不同的离子半径,离子半径的大小通过影响离子在电极材料中嵌入/嵌出,进而使得Fe_3O_4/石墨烯复合材料在不同种类电解质中的比电容大小不同,3种电解质中比电容的大小顺序依次为KOH电解质Na_2SO_3电解质Na_2SO_4电解质,且在0.9 mol/L KOH电解质中比电容达到最大值(330 F/g,电流密度0.4 A/g);不同浓度的KOH电解质具有不同的粘度和电导率,电解质的粘度和电导率将影响离子的迁移速度,进而对Fe_3O_4/石墨烯复合材料的电容性能产生影响。  相似文献   

5.
通过自聚合反应及高温热处理手段,再采用化学氧化聚合法在复合物的表面自组装生长聚苯胺(PANI)纳米须,成功构筑了MnO/介孔碳(MC)/PANI三元纳米复合材料。材料的结构及其电化学性能测试结果表明:该复合材料的比电容在1.0A/g的电流密度下达到498.6F/g,显著高于MnO/MC二元复合材料的比电容(212F/g);当电流密度增加至10A/g时,比电容仍能保持352F/g。经过1000次的充放电循环,复合电极的比容量保持率为71.6%。  相似文献   

6.
为提高ZnFe_2O_4的电化学性能,采用一步溶剂热法合成ZnFe_2O_4纳米粒子-石墨烯复合材料,对其进行X射线衍射、扫描电子显微镜、透射电子显微镜表征和电化学性能分析。结果表明:该方法可防止二维层状结构石墨烯团聚,把ZnFe_2O_4颗粒粒径控制在纳米级且均匀地附着到石墨烯片层上;复合材料呈现二维层状结构,比表面积达到180 m~2/g,有效增加活性位点数量;当电流密度为1 A/g时,复合材料电极的比电容达到180.9 F/g,电化学性能优于纯ZnFe_2O_4电极。  相似文献   

7.
采用蒙脱土为基的新型氮掺杂多孔碳(NMC),通过超声分散法制备NMC@MnO_2复合材料,再与苯胺(ANI)原位聚合得到NMC@MnO_2@PANI复合材料。采用红外光谱、拉曼光谱、X射线衍射和扫描电镜表征复合材料的组成和形貌。复合材料在1mol/L Na_2SO_4电解液中,电流密度0.25A/g时,质量比电容为228.5F/g;1A/g电流密度下,800次循环充放电后,比电容保持率为86%;在1mol/L H_2SO_4酸性电解液中,电流密度0.5A/g时,质量比电容为588.0F/g,在1A/g电流密度下,经过800次循环充放电后,比电容保持率76%。结果表明:NMC@MnO_2@PANI复合材料在中性和酸性电解液中能够表现出较好的电化学电容性能。  相似文献   

8.
采用微乳液法制备了铁基复合材料,研究了反应温度、十六烷基三甲基溴化铵(CTAB)用量对其电容性能的影响.结果表明,在温度为140℃,CTAB用量为1.5 g时,所制得的电极材料电容性能最佳:当电流密度为1 A/g时,比电容为202.5 F/g;电流密度为2 A/g时,比电容为123.0 F/g;电流密度为5 A/g时,比电容为78.0 F/g.  相似文献   

9.
《中国粉体技术》2016,(1):63-66
为了大量、方便地制备电化学性能优异的锂离子电池负极材料,利用一步煅烧法制备石墨烯包覆Mn_3O_4纳米复合粉体,采用X射线衍射、扫描电子显微镜、透射电子显微镜对复合粉体进行表征,并进行电化学性能检测。结果表明:石墨烯把Mn_3O_4颗粒很好地包覆在里面;石墨烯包覆Mn_3O_4纳米复合粉体具有优秀的电化学性能,含碳质量分数为13%的石墨烯包覆Mn_3O_4纳米复合粉体首次放电比容量达到859.7 m A·h/g,电流密度为1 600 m A/g时的放电比容量保持在380 m A·h/g,循环100次后放电比容量几乎保持不变。  相似文献   

10.
以废茶叶的炭化料为前驱体,KOH为活化剂(碱炭比1∶1、2∶1、3∶1),在800℃下活化1h制备双电层电容器用活性炭电极材料。利用扫描电镜、低温N2吸附对活性炭的形貌、孔结构进行表征,采用恒流充放电、循环伏安和交流阻抗等测试方法评价其在3mol/L KOH电解液中的电化学性能。结果表明,3种活性炭比表面积、总孔容和中孔率最高分别达1 900m2/g、0.919 4cm3/g和35.7%;3种活性炭电极材料在0.055 6 A/g电流密度下的比电容分别为202F/g、255F/g、194F/g,电流密度增加到2.780A/g时,电容保持率分别为84.2%、67.1%、86.6%;等效串联电阻仅为0.10~0.12Ω;在碱碳比为2∶1时制备的活性炭电极材料在2.363A/g下比电容为148F/g,经1 000次循环充放电后,其质量比电容为147.7F/g,电容保持率高达99.3%。  相似文献   

11.
利用实验室自制茶梗纳米纤维素原位合成纳米纤维素(CNC)/四氧化三铁(Fe_3O_4)纳米球,并对其粒径大小、结晶性质、磁性性能和电化学性能进行分析表征。结果表明,通过原位合成法所制得CNC/Fe_3O_4纳米球,粒子间分散性良好,直径约为10~30 nm;CNC/Fe_3O_4纳米球具有磁化强度34.9 A·m~2/kg的磁特性;CNC/Fe_3O_4纳米球表现出良好的电化学性能,CNC/Fe_3O_4电极的比电容主要是Fe_3O_4产生的赝电容,在电流密度0.03 A/g时,比容量可达30.14 F/g,在0.04 A/g电流密度下,经过500次充放电后容量保持率为78.76%。CNC/Fe_3O_4电极中离子的扩散为Warburg机理。  相似文献   

12.
利用简单的低温水热法和后续高温煅烧,将Co_3O_4纳米片成功的生长在碳微球表面。X-射线衍射(XRD)和场发射扫描电镜(FE-SEM)测试表明,Co_3O_4纳米片自组装呈疏松状包覆于碳微球表面,纳米片之间相互交织形成三维多孔结构,丰富的孔道极有利于电解质离子在电极材料活性物质中的迁移和渗透。将其作为工作电极,表现出较高的电容性能,电流密度为1A/g时比电容达184F/g,当电流密度达5A/g时电容保持率为82.6%,电极材料具有良好的倍率特性。  相似文献   

13.
用模板法制备聚吡咯纳米管(PPyNTs),然后采用乙醇混合法将其和多壁碳纳米管(MWCNTs)制备了复合电极材料(PM)。比较不同材料在传统H_2SO_4电解液和添加了具有氧化还原活性物质胭脂红(AR18)的电解液中的电化学性能。三电极测试结果表明,在H_2SO_4电解液中PPy纳米颗粒的比电容为220 F/g,在氧化还原电解液中,PPyNTs的比电容为579.2 F/g,高于PPy纳米颗粒(445 F/g),而PM复合材料的最高比电容可达674.2 F/g,既高于单一PPyNTs又高于MWCNTs的(405.8 F/g)。利用性能优化的PM-3复合材料组装对称电容器,当电流密度为0.5 A/g时,功率密度为300 W/kg,能量密度达15.7 Wh/kg,且经过5000次循环,电容保持率为90%。说明AR18和H_2SO_4构建的氧化还原电解液能够提供额外的氧化还原反应,使具有双电层电容和赝电容的复合材料具有更加优良的电化学性能。  相似文献   

14.
以硝酸镍、钼酸钠和多壁碳纳米管为原料, 通过水热反应法制备了钼酸镍/多壁碳纳米管(NiMoO4/MWCNTs)复合材料。采用扫描电子显微镜、X射线能谱和X射线衍射对材料组成和形貌进行表征。结果表明: MWCNTs 很好地包覆在球状NiMoO4外表面, 且各元素均匀地分布在材料中。循环伏安和电化学阻抗实验证实MWCNTs显著增强了NiMoO4的氧化还原信号和电荷转移动力学特性。电容测试实验进一步表明, 复合材料较NiMoO4单一材料具有更高的比电容、倍率特性及循环稳定性, 且当MWCNT含量为40 mg时, 所得产物(NiMoO4/MWCNTs-40)具有最佳的电化学性能。电流密度为2 A/g时, NiMoO4/MWCNTs-40复合材料的比电容高达1071 F/g; 当电流密度增大到10 A/g时, 比电容仍能保持原来的66.10%。在10 A/g的电流密度下, 经过2500次循环充放电后, NiMoO4/ MWCNTs-40复合材料的比电容保持率高达95.85%, 表明该材料具有出色的循环稳定性。  相似文献   

15.
以4A分子筛(4A)和改进Hummers法制备的氧化石墨烯凝胶(GO)为原料, 按一定质量比进行混合超声分散, 以混合分散液为前驱体煅烧制备了氧化还原石墨烯(RGO)包覆的三维复合4A/RGO电极材料。采用X射线衍射(XRD)、拉曼光谱(Raman)、孔径分析、扫描电子显微镜(SEM)和电化学测试等方法研究了复合材料的结构、形貌及超级电容性能。测试结果表明, 4A均匀地穿插在RGO片层中, 阻止了RGO片层之间相互堆积, 而RGO片层之间相互链接, 形成三维空间导电网络, 提高了复合电极材料的导电性。当GO与4A质量比为1:6时, 复合材料在4 A/g电流密度下比电容可达450 F/g, 在此电流密度下循环800次后, 其比容量保持率为85.7%, 表现出良好的倍率性能和循环稳定性。该4A/RGO复合电极材料超级电容性能优于纯4A或RGO, 可归因于4A和RGO之间的协同效应。  相似文献   

16.
采用接替离子层吸附反应(SILAR)沉积法成功地在KCu7S4微米线上沉积CuO纳米片得到CuO/KCu7S4复合纳米材料,并应用于超级电容器的电极。通过对该纳米复合材料表征表明,随沉积次数增加,CuO的含量增加,该CuO为片状结构,均匀地分布于KCu7S4微米线上。在1A/g的电流密度下,沉积次数分别为0、20、40和60的样品比电容分别为10.04、25.52、30.84和40.92F/g。CuO/KCu7S4-60在0.7A/g的电流密度下比电容为47.6F/g,并且在5A/g的电流密度下进行1000次的循环充/放电测试后比电容增加到初始电容的117.29%。  相似文献   

17.
利用以苯胺与过硫酸铵制备的聚苯胺和改进的Hummers法制备的氧化石墨烯(GO)为原料,将聚苯胺分散于GO浊液中,再对GO进行还原,制备超级电容器电极材料石墨烯(RGO)/聚苯胺(PANI)复合材料(GRP),利用X射线衍射(XRD)对其结构进行了表征,并对复合材料电化学性能进行了测试。结果表明,复合材料展示良好比电容特性,同时又具有稳定电化学性能。GRP在0.1A/g的电流密度下比电容达到510F/g,1.0A/g电流密度下比电容为485F/g,经过2000次的充放电循环后比电容保持率为92%,即复合物比电容远大于石墨烯,在化学稳定性上远好于PANI。放电响应效率高,在电极中电解质离子容易扩散和迁移。  相似文献   

18.
以褐煤萃取物为炭前驱体, MgO为阻隔剂, KOH为活化剂, 在800℃惰性气氛下制备出类石墨状多孔炭材料。对该多孔炭材料进行了红外(FTIR)、X射线衍射(XRD)、透射电镜(TEM)和拉曼(Raman)表征。以活化前和活化后多孔炭为电极材料, 利用循环伏安、恒电流充放电、交流阻抗对其进行了电化学电容性能评价和比较。结果表明: 活化后炭材料呈现多孔的薄膜状, 比表面积高达1396 m2/g, 而活化前炭材料比表面积仅为138.4 m2/g。当电流密度为1 A/g和4 A/g时, 活化后炭材料比电容分别为533 F/g和390 F/g; 而活化前炭材料对应的比电容为366 F/g和198 F/g。在电流密度为5 A/g下循环8000圈后, 活化前后炭材料的电容保持率分别为72.5%和89.6%。可见, 经过KOH活化后的炭材料比电容和电化学稳定性有了显著提高。该研究证明阻隔剂和活化剂的使用, 能够获得高度柔性的高电容性能的类石墨状多孔炭。  相似文献   

19.
以氧化石墨为载体,采用木质素磺酸钠作为掺杂剂,氯化铁作为氧化剂,引发吡咯单体在氧化石墨层发生化学原位聚合反应,制备了聚吡咯(PPy)/氧化石墨复合材料。通过XRD、FTIR和SEM分析分别对复合材料的物相组成、结构和微观形貌进行了表征,通过TGA分析研究了复合材料的热稳定性,采用恒电流充放电、循环伏安和电化学阻抗谱等方法测试分析其电化学性能。研究表明:采用化学原位聚合的方法合成的PPy/氧化石墨复合材料具有"层-球"状的"三明治"型微观结构,以便形成良好的导电网络,其结晶度高、排列规整、缺陷少,复合材料中吡咯单体通过N-H键与氧化石墨的含氧官能团发生键合。PPy/氧化石墨复合材料新颖的微观结构和良好的化学键合状态使其表现出优异的电容性能。在电流密度分别为0.5、1.0、2.0和5.0 A/g时的比电容分别为500、460、427和396 F/g;经过1000次恒电流(2.0 A/g)充放电循环后, PPy/氧化石墨复合材料的比电容保持率为97.2%。   相似文献   

20.
以天然纳米纤维矿物纤蛇纹石为模板,蔗糖为碳源,合成了具有一维管状形貌的多级孔结构炭材料。通过调控模板与碳源的比例,可以改变炭材料的孔结构分布和比表面积。当纤蛇纹石与蔗糖的质量比为1∶3.0时,模板炭的中大孔比例较高,达到87%,作为双电层电容器(EDLC)储能材料的电化学性能最佳,比电容最大:在6 M KOH三电极条件下,0.5 A/g电流密度条件时容量可达150 F/g,在20 A/g时,比电容仍能保持75%。以10 A/g电流密度循环10 000次,比电容没有明显损失,仍达到119 F/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号