首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在(20±2.0)℃条件下,以实际生活污水为处理对象,以碳纤维为填料(填充率35%),利用序批式生物膜(sequencing batch biofilm reactor,SBBR)反应器,通过限氧曝气,成功实现了亚硝酸型同步生物脱氮(simultaneous nitrification and denitrification,SND)过程。荧光原位杂交技术(fluorescence in-situ hybridization,FISH)半定量表明,氨氧化菌(ammonia oxidizing bacteria, AOB)是硝化系统中的优势菌种。微生物将外碳源以聚β–羟基烷酸酯(poly-β-hydroxyalkanoate,PHA)的形式储存在体内,作为后续反硝化过程所需内碳源。DO=0.5 mg/L,SBBR系统NH_4~+-N和TN去除率分别为95%以上和80.4%,SND效率达77.9%。出水NO_x~--N小于10mg/L,且以NO_2~--N为主。DO=2.0、1.2和0.5 mg/L时,系统N_2O释放量分别为1.38、2.39和1.65 mg/L。AOB的好氧反硝化过程和低氧条件下以PHA作为内碳源的NO_x~--N反硝化过程,都会导致N_2O释放。低DO水平是实现亚硝酸型同步脱氮过程和降低N_2O释放的关键因素。低DO促进了AOB的竞争优势,形成了良好的缺氧微环境,降低了COD降解速率,为反硝化过程提供外碳源作为电子供体,从而降低了N_2O释放量。  相似文献   

2.
巩有奎  彭永臻 《化工学报》2019,70(6):2289-2297
以实际生活污水为处理对象,利用序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),碳纤维为填料(填充率35%),在(20±2.0)℃条件下,分别通过低氧和间歇曝气两种运行方式,成功实现了亚硝酸型同步生物脱氮(simultaneous nitrification and denitrification, SND)过程。120 d后,氨氧化菌(ammonia oxidizing bacteria, AOB)成为硝化系统中优势菌种。AOB具有的“饱食饥饿”特性保证间歇曝气下能快速实现亚硝积累。生物膜能够吸附大量有机物并以聚β–羟基烷酸酯(poly-β-hydroxyalkanoate, PHA)的形式储存在微生物体内,用作后续同步反硝化过程所需碳源。低氧(DO=0.5 mg/L)和间歇曝气条件下,SBBR反应器氨氮去除率均达95%以上,同步脱氮效率分别为77.9%和87.1%,出水以 N O 2 - -N为主,N2O产率分别为4.38%和3.65%。低DO和间歇曝气均能降低COD降解速率,为同步反硝化过程节省外碳源作为电子供体,降低N2O释放量。低氧条件下,AOB的好氧反硝化过程和以PHA作为内碳源的异养菌反硝化过程,都会导致N2O释放增加。间歇曝气条件下交替存在的缺氧环境降低了好氧反硝化底物,有利于减少N2O释放量。  相似文献   

3.
以生活污水为处理对象,采用碳纤维填料制成序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),采用N_2+O_2联合曝气的方式,通过改变N_2和O_2的比例,稳定系统内DO浓度为1.5 mg/L,考察不同曝气强度(30、20和10 L/h)下系统脱氮性能及N_2O释放特性。异养菌和硝化菌共生于生物膜内,异养菌位于外层,硝化菌位于内层,曝气强度降低有利于外部异养菌大量增殖,生物膜厚度增加。曝气强度为30 L/h和10 L/h条件下,SBBR系统NH_4~+-N去除率分别为95%以上和79.2%±1.6%,同步脱氮效率分别为46.2%±2.6%和62.1%±2.3%,N_2O产率分别为6.25%±0.6%和2.93%±0.43%。缺氧阶段,反硝化过程和PHA(聚β–羟基烷酸酯)积累同时发生;好氧阶段,PHA呈先增加后减少的趋势。初始阶段增加的PHA为后续同步发生的反硝化过程提供了电子供体。AOB的好氧反硝化过程和异养菌反硝化过程均可导致N_2O的产生。曝气强度降低导致水力剪切力下降,生物膜内缺氧范围扩大,缺氧区N_2O停留时间延长,利于其反硝化减量。曝气强度由30 L/h降至10 L/h,微生物胞外聚合物(EPS)分泌减少,PS/PN(多糖/蛋白质)由8.59 mg/mg降至6.58 mg/mg,生物膜致密性降低,碳源和N_2O以扩散形式进入缺氧区域能力增强,N_2O释放量降低。  相似文献   

4.
在(20±2.0)℃条件下,利用序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),考察不同碳氮比(C/N=3.0、5.0、8.0和10.0)下同步脱氮(simultaneous nitrification and denitrification,SND)过程N_2O释放及胞外聚合物(extracellular polymeric substance,EPS)变化。C/N由3.0增至10.0,异养菌大量增殖,曝气阶段DO降低,系统硝化性能受到抑制,SBBR系统出水NH_4~+由0.5 mg/L以下增至(7.85±1.42) mg/L,N_2O产量由(2.68±0.17)mg/L降至(1.02±0.12) mg/L。C/N=8.0,TN去除率最大为80.4%±3.5%。反应初期,微生物体内聚β-羟基烷酸酯(PHA)增加,可为后续反硝化过程提供电子供体。AOB好氧反硝化和低氧条件下异养菌反硝化过程均可导致N_2O产生。C/N降低,SBBR内部缺氧区域减少,N_2O还原过程减弱,释放量增加;C/N增加,N_2O扩散进入生物膜内缺氧区域,促进其减量。C/N由3.0增至10.0,微生物EPS分泌由(57.6±5.6) mg/g VSS降至(32.7±3.2) mg/g VSS,其中,TB-EPS含量占65.8%~68.8%。低C/N下,紧密型EPS(TB-EPS)中多糖(PS)含量增加,生物膜更加密实,N_2O扩散进入缺氧区阻力增加,释放量增加。  相似文献   

5.
在常温下〔(20±1)℃〕利用SBR反应器处理低碳氮比实际生活污水,考察连续曝气和间歇曝气方式下亚硝化过程的启动及N_2O的释放。控制SBR反应器DO处于较低水平,并在pH"氨谷"点出现时停止曝气。结果表明,连续曝气和间歇曝气方式分别运行100、75 d后均实现了亚硝化过程。间歇曝气方式下更易实现亚硝化过程。连续曝气和间歇曝气模式下的N_2O转化率分别为12.2%、8.10%。AOB的好氧反硝化过程是N_2O释放的主要途径。间歇曝气模式下的缺氧阶段能够减少好氧段NO_2~-积累,降低好氧反硝化过程底物浓度,减少N_2O释放。  相似文献   

6.
生活污水不同生物脱氮过程中N_2O产量及控制   总被引:7,自引:2,他引:5       下载免费PDF全文
巩有奎  王赛  彭永臻  王淑莹 《化工学报》2010,61(5):1286-1292
利用好氧-缺氧SBR反应器和全程曝气SBBR反应器处理生活污水,分别实现了全程、短程和同步硝化反硝化脱氮过程,研究了不同脱氮过程中N2O的产生及释放情况,同时考察了不同DO条件下同步脱氮效率及N2O产生量。结果表明,全程、短程生物脱氮过程中N2O主要产生于硝化过程,反硝化过程有利于降低系统N2O产量。全程、短程、同步硝化反硝化脱氮过程中N2O产量分别为4.67、6.48和0.35mg.L-1。硝化过程中NO2-N的积累是导致系统N2O产生的主要原因。部分AOB在限氧条件下以NH4+-N作为电子供体,NO2-N作为电子受体进行反硝化,最终产物是N2O。不同DO条件下同步硝化反硝化过程中N2O的产生表明:控制SBBR系统中DO浓度达到稳定的同步脱氮效率可使系统N2O产量最低。  相似文献   

7.
巩有奎  任丽芳  彭永臻 《化工学报》2019,70(4):1550-1558
在(20±2.0)℃ 条件下,以实际生活污水为处理对象,以碳纤维为填料(填充率35%),利用序批式生物膜(sequencing batch biofilm reactor,SBBR)反应器,通过限氧曝气,成功实现了亚硝酸型同步生物脱氮(simultaneous nitrification and denitrification,SND)过程。荧光原位杂交技术(fluorescence in-situ hybridization,FISH)半定量表明,氨氧化菌(ammonia oxidizing bacteria, AOB)是硝化系统中的优势菌种。微生物将外碳源以聚β–羟基烷酸酯(poly-β-hydroxyalkanoate,PHA)的形式储存在体内,作为后续反硝化过程所需内碳源。DO=0.5 mg/L,SBBR系统NH4 +-N和TN去除率分别为95%以上和80.4%,SND效率达77.9%。出水NO x --N小于10 mg/L,且以NO2 --N为主。DO=2.0、1.2和0.5 mg/L时,系统N2O释放量分别为1.38、2.39和1.65 mg/L。AOB的好氧反硝化过程和低氧条件下以PHA作为内碳源的NO x --N反硝化过程,都会导致N2O释放。低DO水平是实现亚硝酸型同步脱氮过程和降低N2O释放的关键因素。低DO促进了AOB的竞争优势,形成了良好的缺氧微环境,降低了COD降解速率,为反硝化过程提供外碳源作为电子供体,从而降低了N2O释放量。  相似文献   

8.
利用序批式活性污泥法(SBR)反应器处理低碳氮比生活污水,在实现短程生物脱氮的基础上,考察了延时曝气条件下短程生物脱氮工艺破坏过程及恢复策略,并确定不同状态下系统N_2O产量。结果表明,经45 d延时曝气后,系统亚硝化过程被破坏,亚硝化率由90%以上降至5%以下,N_2O产率也由13.2%±1.45%降至8.01%±1.36%。仅通过"氨谷"前停止曝气的方式无法短时间恢复亚硝化过程。利用限氧+限时曝气的方式运行45 d,保证了AOB的竞争优势,成功恢复了短程硝化过程。FISH检测发现,短程脱氮过程恢复后,AOB约占总菌群的8.92%。反应器N_2O转化率增至20.13%±2.54%。低氧和高NO_2~--N的积累,导致AOB的好氧反硝化过程顺利进行,从而大大增加了系统氧化亚氮转化率。低DO含量条件下,AOB以NO_2~--N作为电子受体,以NH_4~+-N作为电子供体,N_2O产率增加。  相似文献   

9.
SBBR工艺中亚硝酸型同步硝化反硝化的过程控制   总被引:3,自引:0,他引:3  
采用序批式生物膜反应器(SBBR),在生物膜培养驯化初期实现了亚硝酸盐硝化,通过调节曝气量控制系统内的溶解氧浓度,实现了SBBR工艺中的亚硝酸型同步硝化反硝化生物脱氮,出水中亚硝酸盐累积率(NO2^--N/NO2^--N)达到90%左右,TN低于8mg·L^-1,去除率为71.4%~85.6%。为了实现SBBR工艺中亚硝酸型同步硝化反硝化的过程控制,考察了亚硝酸型同步硝化反硝化生物脱氮过程中DO、pH和ORP的变化规律。试验结果表明,DO、pH和ORP的变化规律与反应器内COD的降解和“三氮”的转化有良好的相关性,并在不同温度条件下的亚硝酸型同步硝化反硝化硝化过程中具有良好的重现性,可以依据DO、pH和ORP在变化曲线上的特征点作为SBBR法亚硝酸型同步硝化反硝化的过程控制参数。  相似文献   

10.
固体碳源生物膜处理低碳城市污水脱氮性能   总被引:1,自引:0,他引:1  
以丝瓜络作为序批式生物膜反应器(SBBR)的生物膜载体和固体碳源,应用同步硝化反硝化(SND)技术处理南方城市低碳污水,进行强化生物脱氮。试验在常温条件下研究了不同填充率、溶解氧(DO)含量、进水p H条件下的脱氮效果,并探讨了丝瓜络固体碳源SND技术的脱氮机理。结果表明,在填充率在40%左右、DO的质量浓度为(4.0±0.2)mg/L、进水p H在7.5±0.2时,脱氮效果最佳,TN平均去除率可达84.99%。丝瓜络作为固体生物膜填料可以很好的实现SND过程,而且丝瓜络可以补充碳源,提高SND的脱氮效率,是一种解决城市低碳污水脱氮过程中碳源不足的方式。  相似文献   

11.
含盐废水硝化过程常常出现亚硝酸盐积累,从而导致强温室气体N2O的产生。利用序批式生物膜反应器(SBBR),考察了含盐生活污水同步脱氮过程不同菌群活性变化及N2O释放过程。结果表明,盐度增加,各菌群活性受抑制程度依次为亚硝酸盐氧化菌(Nitrite Oxidizing Bacteria, NOB)?氨氧化菌(Ammonia Oxidizing Bacteria, AOB)?碳氧化菌。实验盐度范围内(0~20 g NaCl/L),COD出水约稳定在50.0 mg/L,平均NH4+去除率由98%以上降至约70.5%,TN去除率由42.4%降至16.9%,N2O平均产率由3.9%增至13.3%。与SND变化类似,微生物体内聚-β-羟基脂肪酸酯(PHA)和糖原(Gly)积累随盐度增加呈先增加后减少趋势。N2O主要产生于AOB好氧反硝化过程和硝化后期内源反硝化过程。低盐度(≤10 g NaCl/L)下,SBBR内缺氧区有助于减少N2O释放;盐度增加,高盐度耦合低内碳源合成,加剧了内源反硝化阶段各还原酶之间电子竞争。高盐度导致微生物胞外聚合物(EPS)分泌增加,多聚糖(PS)比例上升,膜内缺氧区域减少,抑制N2O还原过程。  相似文献   

12.
巩有奎  赵强  彭永臻 《化工学报》2019,70(12):4847-4855
在(20±2.0)℃条件下,利用序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),考察不同碳氮比(C/N=3.0、5.0、8.0和10.0)下同步脱氮(simultaneous nitrification and denitrification,SND)过程N2O释放及胞外聚合物(extracellular polymeric substance,EPS)变化。C/N由3.0增至10.0,异养菌大量增殖,曝气阶段DO降低,系统硝化性能受到抑制,SBBR系统出水NH4+由0.5 mg/L以下增至(7.85±1.42)mg/L,N2O产量由(2.68±0.17)mg/L降至(1.02±0.12)mg/L。C/N=8.0,TN去除率最大为80.4%±3.5%。反应初期,微生物体内聚β-羟基烷酸酯(PHA)增加,可为后续反硝化过程提供电子供体。AOB好氧反硝化和低氧条件下异养菌反硝化过程均可导致N2O产生。C/N降低,SBBR内部缺氧区域减少,N2O还原过程减弱,释放量增加;C/N增加,N2O扩散进入生物膜内缺氧区域,促进其减量。C/N由3.0增至10.0,微生物EPS分泌由(57.6±5.6)mg / g VSS降至(32.7±3.2)mg / g VSS,其中,TB-EPS含量占65.8%~68.8%。低C/N下,紧密型EPS(TB-EPS)中多糖(PS)含量增加,生物膜更加密实,N2O扩散进入缺氧区阻力增加,释放量增加。  相似文献   

13.
以14 L序批式活性污泥反应器(SBR)处理含盐生活污水,控制曝气体积流量60 L/h、时间300 min,考察不同盐度(NaCl)SBR内微生物活性变化,并确定反应器脱氮及N_2O释放特性。结果表明,盐度对各菌群抑制程度亚硝态氮氧化菌(NOB)氨氧化菌(AOB)碳氧化菌。盐度10 g/L,AOB和NOB受抑制程度较低,而N_2O还原受明显抑制,N_2O产率由盐度0时的5.14%增至10 g/L时的7.96%。盐度增至20 g/L,AOB和NOB均受到明显抑制,系统内亚硝化率达90%以上。系统淘洗出NOB,由全程硝化转变为短程硝化过程。NO_2~--N大量积累和AOB相对含量增加,为低含氧条件下AOB的好氧反硝化提供了条件,高盐度对氧化亚氮还原酶活性抑制也导致了系统N_2O释放量增加。  相似文献   

14.
低氧条件下生物反硝化过程中N2O的产量   总被引:4,自引:0,他引:4       下载免费PDF全文
利用SBR反应器,控制曝气量为0.3 L·min-1,通过改变N2∶O2比例,调节反硝化过程中DO浓度,以连续投加乙醇作为反硝化碳源,考察了低氧条件下NO-3N反硝化过程及N2O的产量。结果表明,DO对反硝化菌的活性具有明显的抑制作用。DO由0增至0.7 mg·L-1,NO-3N还原速率由18.12 mg N·(g MLSS)-1·h-1降至11.37 mg N·( gMLSS)-1·h-1,系统N2O产量由0.23 mg·L-1增至1.74 mg·L-1。其原因为:(1)较高的NO-2N浓度导致系统反硝化速率降低,N2O积累并释放;(2)DO对N2O还原酶活性具有明显的抑制作用。降低缺氧-好氧生物脱氮过程中缺氧反应器内部DO含量,是减少生物脱氮过程中N2O产量的关键因素。  相似文献   

15.
巩有奎  彭永臻 《化工学报》2019,70(11):4410-4419
以生活污水为处理对象,采用碳纤维填料制成序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),采用N2+O2联合曝气的方式,通过改变N2和O2的比例,稳定系统内DO浓度为1.5 mg/L,考察不同曝气强度(30、20和10 L/h)下系统脱氮性能及N2O释放特性。异养菌和硝化菌共生于生物膜内,异养菌位于外层,硝化菌位于内层,曝气强度降低有利于外部异养菌大量增殖,生物膜厚度增加。曝气强度为30 L/h和10 L/h条件下,SBBR系统NH4+-N去除率分别为95%以上和79.2%±1.6%,同步脱氮效率分别为46.2%±2.6%和62.1%±2.3%,N2O产率分别为6.25%±0.6%和2.93%±0.43%。缺氧阶段,反硝化过程和PHA(聚β–羟基烷酸酯)积累同时发生;好氧阶段,PHA呈先增加后减少的趋势。初始阶段增加的PHA为后续同步发生的反硝化过程提供了电子供体。AOB的好氧反硝化过程和异养菌反硝化过程均可导致N2O的产生。曝气强度降低导致水力剪切力下降,生物膜内缺氧范围扩大,缺氧区N2O停留时间延长,利于其反硝化减量。曝气强度由30 L/h降至10 L/h,微生物胞外聚合物(EPS)分泌减少,PS/PN(多糖/蛋白质)由8.59 mg/mg降至6.58 mg/mg,生物膜致密性降低,碳源和N2O以扩散形式进入缺氧区域能力增强,N2O释放量降低。  相似文献   

16.
DO对亚硝酸型SND的影响   总被引:2,自引:0,他引:2  
采用序批式生物膜反应器(Sequencing batch biofilm reactor,SBBR)处理南方地区城市污水,应用亚硝酸型同步硝化反硝化(SND)技术进行强化生物脱氮.在进水TN 30 mg·L-1、COD 150~250 mg·L-1、pH值7.20~7.60及常温(24~29℃)等条件下,研究了DO与TN去除率和亚硝酸盐氮积累率的关系.试验结果表明,在40~100 L·h-1曝气量下均会得到稳定的亚硝酸型SND,当曝气量增加到120 L·h-1时,会向全程硝化转化.曝气量60 L·h-1时为SBBR反应器的最佳曝气条件,脱氮效果更好,亚硝酸盐氮积累率可达89.7%,TN去除率最高可达87.8%.  相似文献   

17.
序批式生物膜反应器的同步硝化反硝化研究   总被引:5,自引:0,他引:5  
序批式生物膜反应器(SBBR)在好氧条件下能创造缺氧微环境.出现同步硝化反硝化现象.为在城市污水处理中实现持久稳定的同步硝化反硝化过程,研究了DO、C/N、温度和pH对SBBR同步硝化反硝化的影响.结果表明:DO是影响同步硝化反硝化重要因素,温度和pH对硝化菌和反硝化菌的生物活性具有明显的抑制作用,在中性和略偏碱性时可较好地实现同步硝化反硝化.  相似文献   

18.
常温下SBBR反应器中短程同步硝化反硝化的实现   总被引:8,自引:3,他引:5  
采用自主设计的序批式生物膜反应器(SBBR)处理城市污水,在常温(25~27℃),pH值7.2~7.6条件下,通过恒定低曝气量实现了稳定的短程同步硝化反硝化。试验还考察了碳氮比对SBBR系统短程同步硝化反硝化的影响。结果表明:在SBBR中处理城市污水实现短程同步硝化反硝化较为适合的碳氮质量比在5~8之间,亚硝酸盐氮积累率在85%以上,TN去除率可以达到80%以上。  相似文献   

19.
以乙酸钠和丙酸钠为外加碳源,考察了碳源种类和碳氮比对多级AO工艺(分别为反应器SBR-A和SBR-P)脱氮性能及其N_2O释放的影响。结果表明,在进水COD为200 mg/L时,SBR-A和SBR-P氮去除率分别为66.7%和67.1%,磷去除率分别为51.1%和28.9%。硝化过程中,SBR-A中NH4+-N氧化速度和NO_3~--N生成速度都比SBR-P高,SBR-A中NO_2~--N和N_2O积累速度比SBR-P低。2组反应器硝化过程中N_2O释放因子均小于0.23%。在反硝化过程中,SBR-A的反硝化速度高于SBR-P,N_2O释放因子均较低;存在同时释磷时,对SBR-A的反硝化速度影响较小,而对SBR-P反硝化活性影响较大,后者反硝化速度明显低于无释磷条件下的反硝化速度;菌群均以变形菌门和拟杆菌门为主,且以陶厄氏菌属、脱氯单胞菌属、蛭弧菌属和硝化螺菌属等为主要功能菌。  相似文献   

20.
污水处理中,高氨氮的污水处理一直是污水处理中比较难解决的问题之一。甚至一些研究学者发现,高氨氮废水处理过程中还会引起温室效应气体氧化亚氮(N_2O)释放。因此,本研究采用逐步提高进水氨氮浓度的方法,驯化具有高效处理高氨氮废水的硝化菌群。研究发现,进水氨氮浓度提高使得活性污泥中溶解氧(DO)浓度降低,进而氨氧化菌(AOB)活性较低,同时导致N_2O气体的释放。在进水高氨氮负荷和低DO浓度条件下,AOB发生好氧反硝化反应,产生温室气体N_2O。因此,建议逐步提高进水氨氮负荷的同时,需要保证活性污泥保持一定浓度的DO,避免导致亚硝化过程中温室气体N_2O的释放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号