首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
环氧树脂(EP)热膨胀系数(CTE)为65×10~(-6)℃~(-1),碳纤维(CF)CTE为-12×10~(-6)℃~(-1),因此降低EP的CTE是提高碳纤维增强环氧树脂(CF/EP)复合材料低温使用性能的关键。采用氧化石墨烯(GO)和四氧化三铁改性氧化石墨烯(Fe_3O_4-GO)修饰EP,研究了GO及Fe_3O_4-GO对EP基体CTE的影响。结果表明:由于Fe_3O_4-GO表面的官能团可与EP基体形成共价键,从而加强了与EP基体的界面作用;相对于纯EP,GO和Fe_3O_4-GO改性EP的玻璃化转变温度(Tg)分别升高了3.71℃和5.74℃;相对于纯EP,GO和Fe_3O_4-GO改性EP在Tg下的CTE值分别降低了23.77%和33.61%,但在Tg上的CTE值均高于纯EP。  相似文献   

2.
以自制的氧化石墨烯、BiOCl/Fe_3O_4为原料,以水合肼为还原剂,制备出Fe_3O_4/石墨烯(G)-BiOCl复合光催化剂。运用X射线衍射、透射电镜和扫描电镜对Fe_3O_4/G-BiOCl的组成和形貌进行了表征,运用振动样品磁强计对其磁性进行了测试;对照研究了Fe_3O_4/G-BiOCl、BiOCl/Fe_3O_4和纯BiOCl对罗丹明B的光催化降解能力以及Fe_3O_4/G-BiOCl光催化活性的循环稳定性。结果表明:Fe_3O_4/G-BiOCl复合光催化剂分布均匀,具有超顺磁性;Fe_3O_4/G-BiOCl的光催化性能优于纯BiOCl和BiOCl/Fe_3O_4,可回收再利用,并具有良好的循环稳定性。  相似文献   

3.
对落叶松植物多酚进行胺甲基化改性,将其包覆于磁性Fe_3O_4颗粒表面,制备了功能化Fe_3O_4@胺甲基改性植物多酚(Fe_3O_4@A-PP),用于能源微藻-普通小球藻的收集。采用FTIR、磁滞回线、zeta电位的方法对Fe_3O_4@A-PP磁性材料的物理化学性质进行了测定,并研究了投加方式、包覆比例对Fe_3O_4@A-PP收集微藻效能的影响。FTIR显示Fe_3O_4@A-PP具有来自A-PP的C—H、N—H和—OH等官能团。A-PP包覆对Fe_3O_4的磁性无改变。与A-PP的zeta电位相比,Fe_3O_4@A-PP的zeta电位增大了5~10mV。Fe_3O_4@A-PP中两者配比影响微藻的收集效率,当配比为20/200时,收集率达到最大值84.2%。采用Fe_3O_4@A-PP可以将磁絮凝收集时间从A-PP的30min缩短至0.5 min以内。显微图像显示,与A-PP絮凝后絮体呈片状松散团聚的状态相比,Fe_3O_4@A-PP收集的微藻细胞呈链状被Fe_3O_4包裹或团簇在其四周。吸附电中和在Fe_3O_4@A-PP磁絮凝收集微藻的机理中发挥重要作用。  相似文献   

4.
以形状记忆环氧树脂EP5-60%为基体,掺杂改性磁性Fe_3O_4纳米粒子,制备了一系列磁和热双重响应纳米Fe_3O_4/环氧树脂形状记忆复合材料。红外测试表明,KH550成功改性了磁性Fe_3O_4纳米粒子,DSC测试确定热响应回复温度为80℃。当改性磁性Fe_3O_4纳米粒子质量分数为7%时,Fe_3O_4-7%/EP5-60%复合材料力学性能最佳,拉伸强度为29 MPa、断裂伸长率为37.3%。弯曲回复测试Fe_3O_4-7%/EP5-60%热响应形状记忆性能,其热响应形状记忆固定率(R_f)为99%,回复率(R_r)为97.9%。录像法记录Fe_3O_4-7%/EP5-60%磁响应形状回复过程时,25 min内能回复形变,磁响应回复率为93.3%。以上结果表明,利用Fe_3O_4纳米粒子的磁性,通过改性并控制好掺杂含量,可以制备性能较好的磁和热双重响应的纳米Fe_3O_4/环氧树脂形状记忆复合材料。  相似文献   

5.
为了提高碳纤维增强环氧树脂(CF/EP)复合材料在低温(77K)循环条件下的抗微裂纹性能,采用共沉淀法制备了具有良好顺磁性的Fe_3O_4修饰氧化碳纳米管(Fe_3O_4-O—MWCNTs),并研究了Fe_3O_4-O—MWCNTs在环氧树脂(EP)基体中的有序排列对EP及CF/EP复合材料低温性能的影响。结果表明:Fe_3O_4-O—MWCNTs的有序排列可有效提高EP基体的低温力学性能及降低EP基体的热膨胀系数,相对于纯EP,Fe_3O_4-O—MWCNTs改性EP的热膨胀系数降低了41.6%;相对于CF/EP复合材料,Fe_3O_4-O—MWCNTs改性CF/EP复合材料在低温环境下的微裂纹密度降低了56.2%。  相似文献   

6.
制备了一种磁性氧化石墨烯(GO-Fe_3O_4),并对其吸附铜离子(Cu~(2+))的性能进行了研究。研究了不同pH和初始浓度对GO-Fe_3O_4去除Cu~(2+)的影响。研究结果表明:改性四氧化三铁(Fe_3O_4@SiO_2)成功被接枝在GO的边缘,GO与Fe_3O_4@SiO_2质量配合比为4∶1,制得的GO-Fe_3O_4,在303℃,pH为4.5,Cu~(2+)初始质量浓度为124.5mg/L条件下,GO-Fe_3O_4对Cu~(2+)的平衡吸附容量达到76.5mg/g。GO-Fe_3O_4在使用第7次时,对Cu~(2+)吸附容量仍可达到55mg/g,具有良好的吸附性能。  相似文献   

7.
为了改善传统磁性吸波材料的阻抗匹配和提升吸波性能,将传统的磁性材料Fe_3O_4、透波材料锂铝硅微晶玻璃(LAS)和还原氧化石墨烯(RGO)进行复合,采用三步法制备Fe_3O_4@LAS/RGO磁性吸波复合材料。通过多种测试手段对其结构、形貌和组成进行表征,并分析其电磁参数和吸波性能。研究了基体氧化石墨烯(GO)添加量对Fe_3O_4@LAS/RGO复合材料的形成和吸波性能的影响,随着GO含量的增加,Fe_3O_4@LAS纳米球的分布变得稀疏,RGO堆叠程度变大。GO的质量分数为40wt%(Fe_3O_4与LAS摩尔比为1∶0.2)时,Fe_3O_4@LAS/RGO复合材料的吸波性能最佳,反射损耗在12.4GHz处达到-65dB,且仅需要2.1mm的匹配厚度,在该厚度下小于-10dB(超过90%的电磁波被材料吸收)的反射损耗达到4GHz。LAS作为涂覆在Fe_3O_4纳米球表面的透波层,引入了多重透射-吸收机制。  相似文献   

8.
成功合成了一种新型的氧化石墨烯/Fe_2O_3纳米管复合材料,并利用透射电镜(TEM)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)对材料的形貌、结构及化学成分进行了表征。结果表明,Fe_2O_3纳米管较为均匀地分布在片状氧化石墨烯表面,材料具有稳定的晶型结构;Fe_2O_3纳米管能够与氧化石墨烯表面基团发生化学键作用,具有良好的界面相容性。  相似文献   

9.
通过二次水热法合成SiC/Fe_3O_4/氧化还原石墨烯(SiC/Fe_3O_4/rGO)复合材料。借助SEM、XRD、XPS、VSM和VNA对材料的形貌、物相、成分、磁性及吸波特性进行分析。结果表明:SiC/Fe_3O_4/rGO复合材料的电磁损耗机制主要为界面极化、涡流损耗和自然共振,其电磁损耗能力较中空结构Fe_3O_4显著增强;当复合材料的匹配厚度为2 mm时,呈现出最大反射损耗为-30.3 dB;当其匹配厚度为1.5 mm时,有效带宽超过6.65 GHz,具有良好的吸波性能。  相似文献   

10.
为解决天然壳聚糖(CTS)作为CO_2开关型乳化剂时响应破乳不完全的问题,对CTS进行磁性Fe_3O_4纳米粒子的接枝改性;采用红外光谱和扫描电子显微镜对接枝改性产物进行表征,并测试其CO_2响应性、乳化性能及破乳效果。结果表明:磁性Fe_3O_4纳米粒子成功接入CTS,并在水中形成CTS包覆磁性Fe3O4纳米粒子的聚集体颗粒;Fe_3O_4纳米粒子的接入并不会影响壳聚糖的CO_2响应性和乳化性能;磁化改性CTS制备的乳液在CO_2作用下,不能完全破乳的情况可在磁性协同作用下发生改善,达到完全的破乳分层。  相似文献   

11.
《功能材料》2021,52(6)
采用溶剂热法制得Fe_3O_4纳米片层垂直均匀生长在石墨烯表面的Fe_3O_4/石墨烯复合材料,并用XRD、BET、SEM、TEM等表征手段对复合材料的结构进行表征,用CV和GCD等方法对复合材料在KOH、Na_2SO_3和Na_2SO_4水溶液中的电化学性能进行测试,分析考察了电解质种类和浓度对Fe_3O_4/石墨烯复合材料电化学性能的影响。结果显示,不同种类的电解质具有不同的离子半径,离子半径的大小通过影响离子在电极材料中嵌入/嵌出,进而使得Fe_3O_4/石墨烯复合材料在不同种类电解质中的比电容大小不同,3种电解质中比电容的大小顺序依次为KOH电解质Na_2SO_3电解质Na_2SO_4电解质,且在0.9 mol/L KOH电解质中比电容达到最大值(330 F/g,电流密度0.4 A/g);不同浓度的KOH电解质具有不同的粘度和电导率,电解质的粘度和电导率将影响离子的迁移速度,进而对Fe_3O_4/石墨烯复合材料的电容性能产生影响。  相似文献   

12.
以二价铁盐和三价铁盐为原料,采用化学共沉淀法制备了磁性纳米四氧化三铁(Fe_3O_4),并采用3-氨基丙基-三甲氧基硅烷对其进行氨基化,制备出氨基化纳米Fe_3O_4。对氨基化纳米Fe_3O_4进行了表征及分析。研究结果表明:氨基已成功在纳米Fe_3O_4颗粒表面修饰,制得的氨基化纳米Fe_3O_4不含羟基铁等其他铁氧化物,改性后材料的磁性并没有发生明显变化。同时,研究了氨基化纳米Fe_3O_4吸附水中氟离子(F-)的动力学吸附机理,对F-的平衡吸附容量为4.7393mg/g,吸附符合动力学二级方程。  相似文献   

13.
为了提高碳纤维增强环氧树脂复合材料在低温(77 K)循环条件下的微裂纹抗性,文中采用共沉淀法制备了具有良好顺磁性的四氧化三铁/氧化石墨烯(Fe_3O_4/GO),采用红外光谱、X射线衍射、扫描电镜、透射电镜等手段研究了Fe_3O_4/GO在环氧树脂基体中的有序排列对环氧树脂及碳纤维增强环氧树脂复合材料低温性能的影响。结果表明,Fe_3O_4/GO的有序排列可有效提高环氧树脂基体的低温力学性能及降低环氧树脂基体的热膨胀系数,并可明显改善碳纤维增强环氧树脂(CF/EP)复合材料的低温微裂纹抗性;相对于纯环氧树脂,改性环氧树脂的热膨胀系数和低温环境下的微裂纹密度分别降低了36.5%和37.5%。  相似文献   

14.
张耀君  余淼  张力  张懿鑫  康乐 《材料导报》2017,31(9):50-56, 63
二维石墨烯优异的理论电子迁移率,为石墨烯与粉煤灰地质聚合物的复合以及半导体光生电子的传输提供了理论依据。本工作首次报道了石墨烯-粉煤灰基地质聚合物复合光催化材料的制备,并将其应用于光催化染料降解的探索性研究。XRD、FESEM、XPS及FT-IR结果表明:粉煤灰颗粒与碱性激发剂反应,生成Si-O-Si(Al)无定形网络结构的石墨烯-粉煤灰基地质聚合物复合材料,Co~(2+)掺杂的Fe_2O_3以无定形态均匀地分布于石墨烯-粉煤灰基地质聚合物复合材料表面。Co~(2+)-10Fe_2O_3-GAFG复合材料对碱性品蓝染料展现出最高的光催化降解活性,归因于Co~(2+)掺杂提供给Fe_2O_3半导体的施主能级,石墨烯对Fe_2O_3光生电子的快速传输,以及羟基自由基(·OH)对染料分子氧化降解的协同作用。该光催化降解反应符合二级反应动力学。  相似文献   

15.
以氧化石墨烯(GO)为平台,利用盐调控的方法、通过改变加入纳米钯(Pd NPs)和纳米氧化铁(Fe_2O_3NPs)的摩尔比以及Fe_2O_3 NPs的内在性质成功制备出一系列的Pd-Fe_2O_3/GO三元复合材料。再经NaBH4还原,可得到最终的Pd-Fe_2O_3/还原氧化石墨烯(RGO)复合材料。催化氧化甲酸实验表明,PdNPs和Fe_2O_3NPs之间存在协同催化效应,且Pd-Fe_2O_3/RGO(1∶0.5)催化性能最好。此外,实验还表明Fe_2O_3NPs形貌对PdNPs和Fe_2O_3NPs之间的协同催化效应有较大影响,且含较大比表面的Fe_2O_3-poNPs的Pd-Fe_2O_3-poNPs/RGO具有最大的催化活性。  相似文献   

16.
制备了Fe_3O_4包覆碳纳米管(Fe_3O_4-CNT)水基磁性纳米流体,采用透射电子显微镜(TEM)表征其分散性,静置观察其稳定性,并对磁场中Fe_3O_4-CNT磁性纳米流体的热导率进行了研究。结果表明,Fe_3O_4-CNT磁性纳米流体能在较高磁场强度的磁场中稳定存在;随着磁场强度的增加,Fe_3O_4-CNT纳米颗粒成链和CNT定向对Fe_3O_4-CNT磁性纳米流体热导率增加先后起主导作用;由于碳纳米管的各向异性,在一定磁场方向下,Fe_3O_4-CNT形成的导热网链使磁性纳米流体热导率显著增加;Fe_3O_4包覆在碳纳米管上由于碳纳米管具有较大的长径比,能够有效的降低Fe_3O_4-CNT在磁场中链的长度以及成链速度,进一步提高了基液的热导率。  相似文献   

17.
采用浓硫酸/浓硝酸(体积比3∶1)混酸改性、超声混融和化学水热法配制负载Fe_3O_4的多壁碳纳米管(MWCNTs),将酸化改性的MWCNTs/Fe_3O_4与纳米级SiO_2以适当比例混合超声研磨所得添加剂MWCNTs/Fe_3O_4/SiO_2与聚氯乙烯(PVC)、聚乙二醇(PEG)、N,N-二甲基乙酰胺(DMAC)共混制膜,获得MWCNTs/Fe_3O_4/SiO_2/PVC共混膜。通过对膜的纯水通量、溶胀度、孔隙率、平均孔径和牛血清蛋白(BSA)截留率进行比较,结果发现:MWCNTs/Fe_3O_4/SiO_2/PVC的接触角为68.1°,纯水通量为111L·m2/h,BSA截留率为73.9%,皆较PVC膜有所提高,且膜的抗张强度(2.09MPa)和延伸率(17.01%)较MWCNTs/Fe_3O_4/PVC膜有所提高。  相似文献   

18.
综述了改性纳米TiO_2、纳米ZnO/CuO、纳米SiO_2/Al2O_3、氧化石墨烯、纳米Fe_2O_3/Fe_3O_4/赤铁矿及高分子吸附材料的研究进展。重点介绍了改性纳米粒子及高分子吸附材料的制备。同时,对改性纳米粒子及高分子吸附材料的应用进行了概述,并提出了改性纳米粒子及高分子吸附材料的未来发展前景。  相似文献   

19.
将改进Hummers法合成的氧化石墨烯(GO)与废茶渣(TW)、Fe_3O_4进行复合获得废茶渣磁性改性物rGO/Fe_3O_4/TW,通过FTIR光谱和XRD对产物结构和晶型进行表征。考察溶液pH值、振荡时间和铀初始浓度对合成产物吸附行为的影响。采用孔结构分析仪和XPS对rGO/Fe_3O_4/TW吸附前后样品的孔特性和表面结构进行吸附机理分析。结果表明,rGO/Fe_3O_4/TW不仅具有优良的去铀性能,短时间内可达近100%的去除率,而且负载铀之后通过磁场作用易从液相中快速分离出来。rGO/Fe_3O_4/TW对铀的吸附过程符合Langmuir模型和准二级动力学模型。对于初始浓度为10 mg/L的含铀溶液,TW、MTW和rGO/Fe_3O_4/TW的最大吸附量分别为97.70 mg g~(-1)、79.46 mg g~(-1)和103.84 mg g~(-1)。同时,rGO/Fe_3O_4/TW具有良好的循环再利用性,经5个吸附-解吸-再吸附循环之后,仍可达到较好的去铀效果,去铀率约为85%。  相似文献   

20.
以共沉淀法制备出表面羟基化的四氧化三铁(Fe_3O_4)磁性颗粒,通过柠檬酸(CA)修饰制备出Fe_3O_4/CA。三步法合成出具有较好荧光性能的CdSe(硒化镉)/CdS(硫化镉)量子点,并经锰(Mn)元素改性,使其具备更好的荧光特性。巯基乙酸(C_2H_4O_2S)为改性后量子点提供连接基团,经乙二胺(C_2H_8N_2)与Fe_3O_4/CA相连接。该材料经荧光分光光度计、荧光显微镜、透射电子显微镜(TEM)和振动样品磁强计(VSM)的表征。结果表明:通过乙二胺的连接(静电吸附及氢键作用),经Mn改性后的CdSe/CdS量子点成功与Fe_3O_4/CA连接,形成了具备磁性荧光双功能的复合材料,饱和磁化强度达到28.86emu/g,其优秀的磁性荧光性能在药物分离、靶向治疗等方面具有很高的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号