首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
本文通过光催化作用,废水的结构发生了根本变化,由有机大分子变成小分子,最终形成无机矿化物,如CO2等。本研究以曙红C20H6O5Br4Na2染料溶液的光催化降解为模型反应,探讨了曙红溶液的初始浓度、催化剂投加量、pH值、通气量等因素对光催化脱色降解效果的影响。研究结果表明,曙红染料在pH为2.23左右时降解较为适宜,染料初始浓度对脱色率的影响符合线性递减的规律,适宜的催化剂添加量为0.07g/L,通气量为0.6L/min左右。  相似文献   

2.
以烷基紫精为有机客体、层状五氧化二钒为无机主体,在液、固两相反应体系中,利用I-与V5+的氧化还原反应,使烷基紫精阳离子通过静电引力作用进入被还原的五氧化二钒层板之间,形成一系列新颖的无机一有机插层化合物。将光催化降解染料废水靛红为探针反应,分别考察了不同光源、不同烷基链的催化剂、催化剂用量,靛红初始浓度等因素对靛红染料的光催化降解效果的影响。  相似文献   

3.
采用B、N和Ce共掺杂TiO_2降解酸性蓝BRL、活性金黄K-2RA、弱酸性黑RB和酸性大红GR 4种染料废水,考察了催化剂用量、染料初始浓度、光照时间和pH值等对其降解率的影响。结果表明:B、N和Ce共掺杂TiO_2除了能使染料快速褪色外,还能将其完全矿化为CO_2,SO_4~(2-)和NH~+_4等离子。酸性大红GR染料和酸性蓝BRL在pH=5、催化剂用量50mg、初始浓度50mg/L、光照180min时降解率分别为98%和94.2%。pH=1、催化剂用量50mg、初始浓度40mg/L、光照时间180min时,活性金黄K-2RA的降解率达94.5%。弱酸性黑RB在pH=2、催化剂用量60mg、初始浓度20mg/L、光照时间210min时,降解率达到最大,为92.6%。  相似文献   

4.
王玥  史宝利 《功能材料》2012,43(24):3447-3451
采用原位还原法制备的银粒子对聚醚砜中空纤维超滤膜进行修饰以提高膜的抗污染能力。以聚乙烯吡咯烷酮(PVP)为分散剂,乙二醇为还原剂,在聚醚砜溶液中将硝酸银还原成银粒子,同时采用相转化法制备中空纤维超滤膜。与未修饰的聚醚砜膜相比,经过银粒子修饰的聚醚砜中空纤维膜的抗污染能力和力学性能都得到明显提高,并且膜的初始水通量和截留率也高于未修饰的膜。当PVP含量为7.5%时,银粒子修饰的聚醚砜中空纤维膜的抗污染能力达到最强,膜的综合性能达到最佳:初始水通量为183L/(m2.h),截留率为94.5%,断裂强度为2.87MPa。在此条件下制备含银膜时,银的流失率仅为4.7%,每100g膜中银粒子的含量为4.55g。  相似文献   

5.
以负载纳米TiO2的电催化膜为阳极,辅助电极为阴极,构成电催化膜反应器用于含油废水处理.考察了电极间距、电解质浓度、电流密度、空时速率、pH和温度对电催化膜反应器降解效果即含油废水化学需氧量(COD)去除率的影响.根据单因素实验分析结果,采用响应面法对电极间距、电解质浓度、pH和温度四个参数进行优化,得出最佳参数为:电极间距43.1mm,电解质浓度14.3 g/L,pH=6.3,温度32.5℃.在电流密度0.312mA/cm2,空时速率15.8 h-1的条件下,电催化膜反应器处理200mg/L含油废水COD去除率为97.54%,能耗为0.75 kWh/m3.  相似文献   

6.
吴家宇  李丹  康龙  冉奋 《材料导报》2018,32(4):549-554
采用电化学诱导表面引发原子转移自由基聚合(SI-eATRP)技术,在涂覆聚多巴胺的聚醚砜膜基底上接枝离子型聚合物分子刷聚对苯乙烯磺酸钠,并通过单体浓度对聚合物分子刷进行调控。采用SEM、AFM、XPS、水接触角等表征方法对改性聚醚砜膜的结构和性能进行表征;采用水通量对其进行滤过性能测定。结果表明:成功地在改性聚醚砜膜表面接枝离子型聚合物分子刷聚对苯乙烯磺酸钠;聚合物刷相互缠结形成了球状颗粒;随着电化学诱导体系中单体浓度的增大,聚合物分子刷的接枝量增加,同时水接触角显著降低;聚合物膜表面离子型分子刷的构筑改善了亲水性,因此其纯水通量明显增加,牛血清白蛋白(BSA)截留率和通量恢复率都得到了提高。SI-eATRP用于聚合物膜材料的表面改性和调控,在生物相容性膜等领域具有潜在的应用前景。  相似文献   

7.
聚氯乙烯/聚醚砜共混小孔超滤膜的研制   总被引:4,自引:0,他引:4  
聚氯乙烯与聚醚砜属部分相容体系。采用溶胶-凝胶相转化法,改变聚合物共混比例、混合溶剂、添加剂用量,制备了一系列聚氯乙烯/聚醚砜(PVC/PES)共混超滤膜。通过调配铸膜液中聚合物共混比例,可大大提高共混膜的强度和韧性。其水通量和截留率与同类日本产高分子分离膜相比,均有较大提高。  相似文献   

8.
以钛酸丁酯、硝酸钴和葡萄糖为原料,采用溶胶凝胶法制备钴、碳共掺杂的纳米Co-C/TiO_2催化剂,通过X射线衍射(XRD)和紫外可见漫反射光谱(UV-vis)表征分析,鉴定样品的晶型,估算晶粒大小以及测定样品的光学性能,并计算带隙能。结果表明,Co-C/TiO_2催化剂仍然以锐钛矿型存在,晶粒尺寸约为12.08nm;催化剂的带隙能降低,吸收带边发生红移。在紫外光照下,考察光照时间、催化剂用量、苯酚初始浓度和pH值等因素对Co-C/TiO_2光催化降解苯酚的影响。利用响应面优化设计及降解模型拟合,得到降解苯酚的最佳条件为:加入0.05g催化剂,初始浓度为17.44μg/mL,pH=5.68,此时苯酚降解量最大可达15.67mg/g。  相似文献   

9.
采用非溶剂致相分离(NIPS,nonsolvent induced phase separation)法制备小孔径磺化聚醚砜-聚醚砜(SPES-PES)共混超滤(UF)膜,对其进行性能表征,讨论溶剂、聚合物浓度、聚合物配比对膜性能的影响.结果表明,溶剂对膜性能的影响较大,用N,N二甲基乙酰胺(DMAc)制得的UF膜通量和截留率相对来说都比较好;随着聚合物SPES-PES浓度的增大,水通量减小,对PEG10000的截留率先增大再基本保持不变;根据实验结果,共混UF膜的截留分子质量(MWCO)小于6 000Da,其为负电荷小孔径共混UF膜.根据Matlab计算,共混UF膜的孔径为1.98nm,其MWCO为3 060Da.  相似文献   

10.
复合型离子导电聚合物电解质材料是一种以有机聚合物为主要基体且具备离子导电能力的多相功能复合材料,它是由聚合物材料与各种导电物质以均匀分散混合、层叠复合等方式制备而成.复合型离子导电聚合物电解质在电致变色玻璃、锂离子电池、膜燃料电池、超级电容器、传感器等许多领域都具有广阔的应用前景,近年来引起了人们的高度关注.综述分析了基于聚氧化乙烯的复合型离子导电电解质的基质材料、纳米无机改性填料、纳米分子筛改性填料、盐种类与浓度对PEO基聚合物电解质影响、聚合物电解质常用表征方法等方面的最新研究进展,并对该领域今后的研究工作做了展望.  相似文献   

11.
为了提高电催化膜的电催化性能,通过电化学-水热法制备了以聚四氟乙烯(PTFE)微孔膜为支撑,Bi掺杂SnO_2修饰的碳纳米管(CNT)电催化膜(PTFE/Bi-SnO_2-CNT),分别进行了膜的电化学性能分析、形态结构表征及水中双酚A (BPA)降解性能实验。结果表明,PTFE/Bi-SnO_2-CNT为多孔导电网络结构,Bi-SnO_2颗粒均匀负载在碳纳米管表面,粒径为3.8 nm,当铋锡摩尔比为1∶15、电沉积电压为2.5 V时,制备的PTFE/Bi-SnO_2-CNT析氧电势为1.75 V,在3 V直流电压下,连续运行12 h, PTFE/Bi-SnO_2-CNT对浓度为30 mg/L的BPA降解率可达76.3%.这一结果说明PTFE/Bi-SnO_2-CNT具有良好的电化学性能、BPA吸附和降解性能,可成为电催化降解水中有机物的新型膜材料.  相似文献   

12.
在聚砜(PSf)主链上固定引发点氯甲基后,通过原子转移自由基(ATRP)的方法,将大分子水溶性单体甲基丙烯酸聚乙二醇酯(POEM)接枝聚醚砜上得到一种基于聚醚砜的两亲性聚合物聚醚砜接枝聚甲基丙烯酸聚乙二醇(PSf-g-POEM)。文中以合成的聚醚砜两亲性聚合物为添加剂待对聚醚砜(PES)膜进行共混改性。对改性后的聚醚砜共混膜进行了差示扫描量热分析(DSC)以评估两者的相容性能,测定其接触角和表面化学组成以评价改性前后亲水性变化。此外,论文还对膜的动态抗污染性以及各种过滤阻力也进行了定量测试。  相似文献   

13.
磺化酚酞型聚醚砜/改性蒙脱土纳米复合膜的研究   总被引:1,自引:0,他引:1  
用季胺盐改性蒙脱土和磺化酚酞型聚醚砜首次制得了磺化酚酞型聚醚砜/改性蒙脱土纳米复合质子交换膜,并用1H NMR、SEM、FT-IR等分析手段对其进行了表征,测定了复合膜的质子导电率.研究结果表明:改性蒙脱土以纳米颗粒形式分散于磺化酚酞型聚醚砜聚合物基体中;在相同测试温度下,磺化酚酞型聚醚砜/改性蒙脱土纳米复合质子交换膜的质子电导率随着改性蒙脱土含量增加而增加,添加10%(wt)改性蒙脱土的复合质子交换膜,在80℃下的质子电导率为8.53×10-4S/cm.  相似文献   

14.
采用原位植入法将纳米纤维素(CNW)沉积到聚醚砜(PES)超滤膜的表面,研究凝固浴中不同纳米纤维素的浓度对聚醚砜超滤膜性能的影响,分别用扫描电子显微镜、接触角测定仪等对改性膜性能进行评价。结果表明,CNW能够良好的植入聚醚砜超滤膜表面,改变沉淀浴浓度可以获得不同CNW覆盖率的聚醚砜膜表面,改性膜断面和表面形貌也获得不同程度的改善。改性膜的亲水性随CNW浓度的提高而不断增强,当CNW浓度为0.4%(质量分数)时,此时膜拥有最大的纯水通量333 L/(m~2·h),未改性的纯膜只有192 L/(m~2·h)。膜蛋白抗污染实验中通量恢复率的结果表明,改性膜的抗污染能力明显提高。本研究为利用先进纳米材料制备高性能纳米复合膜提供了新的思路和方法。  相似文献   

15.
以聚氧化乙烯/ 高氯酸锂络合物( ( PEO)8LiClO4 ) 为基体, 通过钛酸四丁酯的水解缩合反应在基体中原位生成TiO2粒子, 制备了TiO2 / ( PEO)8LiClO4复合聚合物电解质膜。采用SEM、DSC 和交流阻抗方法分别研究了电解质膜的表面形貌、热性能和离子导电性能。结果表明, 原位生成的TiO2 粒子均匀分散于PEO 基体中。复合TiO2后电解质膜的玻璃化转变温度和结晶度降低。电解质膜的离子导电行为满足Arrhenius 方程, 并在5 %TiO2含量时体系的电导率出现最大值5. 5 ×10 -5 S/ cm (20 ℃) 。以此膜为电解质组装的全固态聚合物锂电池放电时电压平稳, 20 次循环后放电容量保持在107 mAh/ g。   相似文献   

16.
以硅藻土为载体, 四氯化钛为前驱体, 采用水解沉淀法制备了纳米TiO2/硅藻土复合材料。结合XRD、SEM、氮气吸脱附等表征手段, 探究了复合材料对罗丹明B的光催化性能, 对影响复合材料光催化性能的因素进行了研究。结果表明: 锐钛矿型纳米TiO2以团聚体和分散状负载于硅藻土表面。催化剂用量、染料溶液pH、无机离子、光照强度等因素都会在不同程度上影响TiO2/硅藻土复合材料的光催化性能。在染料初始浓度为10 mg/L, 催化剂用量1.0 g/L, 紫外光强度为300 W, 光照60 min的条件下, 罗丹明B光催化降解率达到99.8%。  相似文献   

17.
为模拟自然界光催化过程,以磺化聚砜/聚醚砜共混膜为基膜,通过静电组装法制备了TMPyP@SPSf/PES功能膜,构建了可实现连续光催化降解-分离的光催化膜反应器,用于低浓度有机染料和苯酚的降解.结果表明,在连续光辐照动态错流过滤模式下,罗丹明B的降解率超过90.0%,优于间歇光辐照模式下83.5%的降解率.跨膜压差对染料降解有显著影响,随跨膜压差的降低,膜通量下降,降解率升高.当跨膜压差为2×10~(-3) MPa时,光催化膜反应器对酸性品红、甲基橙、罗丹明B、结晶紫、孔雀石绿及亚甲基蓝等染料的降解率均超过95.0%.对10 mg/L的苯酚连续降解300 min,苯酚降解率维持在98%左右.此外,采用气-质联用对罗丹明B降解产物分析表明,罗丹明B染料被降解为多元醇和酸等易于生物处理的小分子化合物.  相似文献   

18.
DMAc / LiCl 体系下纤维素 / 聚醚砜共混膜的制备与表征   总被引:1,自引:1,他引:0  
采用 N,N-二甲基乙酰胺(DMAc) / 氯化锂(LiCl)体系作为纤维素溶剂,制备了纤维素 / 聚醚砜共混膜。探讨了共混比对膜的断裂强度、断裂伸长率和纯水通量等膜性能的影响,并确定了纤维素 / 聚醚砜最佳共混比为 1 : 16。 对共混膜进行了 SEM 和 DSC 分析,确认了纤维素 / 聚醚砜共混膜是一个相容的聚合物共混体系。  相似文献   

19.
通过氨化聚醚砜(PES-NH_2)与纯聚醚砜(PES)共混的方法,经过非溶剂致相转化(NIPS)法得到了亲水抗污型聚合物膜。通过扫描电子显微镜(SEM)和X射线电子能谱(XPS)对膜的结构和表面化学组成进行了分析。结果表明,以氨化聚醚砜(PES-NH_2)为共混改性剂时,共混膜的表面亲水性和抗污染性能均得到显著改善;当改性剂的含量为6%且压力为0.2 MPa时,膜材料的水通量可达到146.3 L/(m~2·h),其抗污染性能和截留率都相对较好。通过分子氨化改性能够显著改善聚醚砜膜的亲水性和抗污染能力。  相似文献   

20.
李兆  曹静  王永锋  刘薇 《化工新型材料》2019,47(10):177-179
采用溶胶-凝胶法制备了纳米Mn-TiO_2粉体,通过X射线衍射(XRD)和扫描电镜(SEM)对其结构和形貌进行表征,研究了Mn-TiO_2粉体对孔雀石绿染料废水的光催化降解性能。探讨了孔雀石绿初始浓度、Mn-TiO_2催化剂投加量、体系pH等条件对催化效果的影响。结果表明:溶胶-凝胶法合成的Mn-TiO_2粉体为锐钛矿型结构,物相纯净,当孔雀石绿初始浓度为10mg/L,Mn-TiO_2催化剂添加量为1.0g/L,pH=7.0时,紫外光照射120min后MnTiO_2粉体对孔雀石绿的降解率可达87%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号