首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
魏庆  姚秀颖  张永民 《化工学报》2016,67(5):1732-1740
针对细颗粒气固鼓泡流化床中床料与竖直传热管壁面间的传热行为,在前期实验的基础上,采用计算颗粒流体力学(CPFD)方法从颗粒在传热壁面更新的角度,深入分析了传热特性与壁面气固流动行为之间的关联性。结果表明,模拟得到的传热管壁面颗粒更新通量和基于颗粒团更新模型的颗粒团平均停留时间均能很好解释实验测得的传热系数变化规律,这证实颗粒团更新是影响传热过程的控制性因素。模拟还发现随加热管从床层中心向边壁的移动,加热管周向方向上颗粒更新通量和传热系数的不均匀性都呈增大趋势。随着表观气速的增大,气泡行为导致床层颗粒内循环流率增大,这是导致颗粒团在加热管壁面上的更新频率增大以及床层与壁面间传热系数增大的根源。  相似文献   

2.
针对细颗粒气固鼓泡流化床中床料与竖直传热管壁面间的传热行为,在前期实验的基础上,采用计算颗粒流体力学(CPFD)方法从颗粒在传热壁面更新的角度,深入分析了传热特性与壁面气固流动行为之间的关联性。结果表明,模拟得到的传热管壁面颗粒更新通量和基于颗粒团更新模型的颗粒团平均停留时间均能很好解释实验测得的传热系数变化规律,这证实颗粒团更新是影响传热过程的控制性因素。模拟还发现随加热管从床层中心向边壁的移动,加热管周向方向上颗粒更新通量和传热系数的不均匀性都呈增大趋势。随着表观气速的增大,气泡行为导致床层颗粒内循环流率增大,这是导致颗粒团在加热管壁面上的更新频率增大以及床层与壁面间传热系数增大的根源。  相似文献   

3.
密相区内自由移动的煤颗粒表面传热系数是循环流化床锅炉设计和运行的重要参数。利用石墨球模拟煤颗粒,在小型流化床实验台上对由粒度较小的石英砂颗粒组成的密相区内自由移动的石墨球表面传热系数进行了测量。测量结果显示,随着流化风速的增加,石墨球表面传热系数首先升高,当流化风速达到某一临界值时,继续增大流化风速,传热系数将保持不变,从传热的角度证明了流化床内煤颗粒基本停留在乳化相内。在多数情况下,石墨球表面传热系数随床料粒度的增大而减小。而在较低流化风速的情况下,随着床料粒度的增大,石墨球表面传热系数呈先下降后升高的趋势。当流化风速和床料粒径保持不变时,石墨球表面传热系数随着石墨球直径的增大而减小,且下降的趋势随石墨球直径的增大而减弱。而随着床层高度的增加,石墨球表面传热系数将会略有升高。  相似文献   

4.
晁俊楠  吕俊复  杨海瑞  张缦  刘青 《化工学报》2014,65(8):2869-2875
密相区内自由移动的煤颗粒表面传热系数是循环流化床锅炉设计和运行的重要参数。利用石墨球模拟煤颗粒,在小型流化床实验台上对由粒度较小的石英砂颗粒组成的密相区内自由移动的石墨球表面传热系数进行了测量。测量结果显示,随着流化风速的增加,石墨球表面传热系数首先升高,当流化风速达到某一临界值时,继续增大流化风速,传热系数将保持不变,从传热的角度证明了流化床内煤颗粒基本停留在乳化相内。在多数情况下,石墨球表面传热系数随床料粒度的增大而减小。而在较低流化风速的情况下,随着床料粒度的增大,石墨球表面传热系数呈先下降后升高的趋势。当流化风速和床料粒径保持不变时,石墨球表面传热系数随着石墨球直径的增大而减小,且下降的趋势随石墨球直径的增大而减弱。而随着床层高度的增加,石墨球表面传热系数将会略有 升高。  相似文献   

5.
基于多相流体质点网格方法(MP-PIC)对高灰煤在三维鼓泡流化床气化过程进行了数值模拟研究。在欧拉-拉格朗日框架下将气相和固相分别视作连续介质和离散相处理。首先,将模拟得到的出口处气体组分结果与实验数据进行对比,实验数据与模拟结果具有良好的一致性。其次,研究了煤颗粒在气化炉内的温度、传热系数、速度和停留时间,从颗粒尺度揭示了鼓泡流化床气化炉内的颗粒分布特性和气固流动特征。结果表明:在气化炉入口附近煤颗粒与床层温差最大,传热系数最大;由于流化床内强非线性的气固流动,床中煤温度和传热系数的空间分布不均匀;煤颗粒和床料的瞬时速度具有稳定的波动幅度,其中垂直方向速度波动最明显,且煤颗粒的瞬时速度比床料的瞬时速度略大;由于颗粒间的剧烈碰撞,延长了煤颗粒停留时间。此外,对鼓泡流化床中煤气化过程颗粒尺度的研究,有助于深入了解固体颗粒的流动行为以及气固相相互作用特性,对鼓泡流化床反应器的设计优化具有重要意义。  相似文献   

6.
研究了振动对固流体波面换热器传热特性的影响。结果表明:振动床中温度场的发展明显优于同类条件下移动床中温度场;在频率在23.67Hz和一定流量下,随着振幅在一定范围内增大,其壁面传热系数也增大,有利于床怪内物料间的传热.  相似文献   

7.
朱学军  叶世超  吕芹 《化学工程》2007,35(12):18-21
采用带浸没加热管的惰性粒子振动流化床对膏状物料干燥进行了实验研究。考察了加料速率、进气温度、进气速度、加热管功率、振动强度等参数对床温和体积传热系数的影响,得出了计算体积传热系数的关联式。结果表明,在流化床中增设振动和浸没加热管装置,能大大强化传热传质,体积传热系数随加料量、振动强度、加热管功率、进风速度的增加而增大,随进气温度的增加而减小。其结果对惰性粒子流化床干燥器的设计和改进具有重要的指导意义。  相似文献   

8.
采用自行设计的环形小通道换热装置,对双面加热环形小通道内单相水处于流动充分发展下的对流换热特性进行了实验研究,通过热电偶、流量计测量内外壁面温度、水温和水流量,分析单相水处于不同热流密度下内外壁面热流密度、流量与对流传热系数之间的关系特性,结果表明:通道内外壁单独加热时的壁面对流传热系数均随加热热流密度的增大而增大,当加热热流密度一定时,内壁面对流传热系数随流量的增大而增大,外壁面对流传热系数随流量的增大变化不明显;内外壁同时加热时,随着内、外壁加热热流密度比的增大,内壁面的对流传热系数先减小后增大,而外壁面的对流传热系数一直增大。  相似文献   

9.
基于欧拉-欧拉双流体模型,数值模拟倒置液固流化床内液固两相流动行为.数值模拟预测了床内颗粒的速度、浓度分布以及空隙率的变化.研究结果表明颗粒在床内分布呈现非均匀分布,床内形成局部高空隙率的流体团;随着床层高度增加,颗粒轴向速度增大:数值模拟床内空隙率与Renganthan等的实验结果相吻合.  相似文献   

10.
流化床中流体与颗粒间的传热主要发生在流化床的进口部分,流体与颗粒间传热系数的大小与流体在颗粒周围空隙间的流动状态密切相关。研究者们经过大量实验,采用流体流动准数、流体物性参数和传热准数拟合回归出表达颗粒与流体间的传热系数的关联式。总结了四种研究颗粒与流体间传热系数的方法、气固两相流的传热机理和应用较为广泛的传热系数关联式,并进一步提出了研究目标和难点。  相似文献   

11.
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
在二维振动流化床中,以平均粒径1.83 mm的玻璃珠为物料,研究了大颗粒与水平管间局部传热规律;考察了气速、振动频率等因素对局部传热系数的影响,同时与小米和小玻璃珠实验结果进行对比。结果表明:大颗粒与小颗粒局部传热系数有很大差异;对于大颗粒,低速下局部传热系数随振动频率的增大先增加后减小,高速下局部传热系数随着振动频率的增加而降低;一定振动频率下,气速小时局部传热系数在60°左右达到最大,气速逐渐增加后,其最大值向90°转移。通过实验数据得到了计算大颗粒与水平管局部传热系数的关联式,计算值与实验值吻合较好,误差在±20%范围内。结果可为带浸没水平管的振动流化床设计和研究提供参考。  相似文献   

13.
Particle-wall contact behavior of the solids in a gas-solid fluidized bed was experimentally studied using the radioactive particle tracking (RPT) technique in which the position of a radioactive tracer is monitored when moving freely in the bed. The solids were sand particles, fluidized by air at room temperature and atmospheric pressure at various superficial velocities, covering both bubbling and turbulent regimes of fluidization. The motion of individual particles near the wall of the bed was studied based on the position of the tracer. The contact time, contact distance and contact frequency of the particles at the wall were evaluated. It was found that the distribution functions of these three parameters become wider by increasing the superficial gas velocity. Axial profiles of contact time and contact distance were also studied in this work. Axial profiles of the overall heat transfer coefficient in the fluidized bed were estimated based on the formulas reported in the literature and the experimental particle-wall contact time evaluated in the present study. Based on such profiles, in order to benefit from the maximum heat transfer coefficient along the bed, it is recommended to place the heat exchanging surface in the middle of the bed, i.e., not very close to the gas distributor as well as far from the top of the dense bed.  相似文献   

14.
Experiments were conducted in a bubbling air-fluidized bed to investigate the effect of annular fins of constant thickness on heat transfer. Steady state time averaged local heat transfer coefficient measurements were made by the local thermal simulation technique in a cold bubbling fluidized bed (90 mm ID, 260 mm tall) with horizontally immersed tube initially with no fin and then with three fixed annular fins of constant thickness. Silica sand of mean particle diameter 307 μm and 200 μm were used as the bed materials. The superficial velocity of air was from minimum fluidization conditions, umf, to approximately 3 × umf. The results indicate that, although the heat transfer coefficient falls with the use of fins, the total heat transfer rises as a result of the greater surface area. Increasing the particle diameter reduces the heat transfer coefficient not only for unfinned horizontal tube but also for annular finned horizontal tube at the same conditions of fluidized bed. Based on the experimental data, correlations are proposed for predicting heat transfer coefficient from fluidized bed to horizontally immersed tubes with and without fins.  相似文献   

15.
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 ...  相似文献   

16.
A relatively new variant in fluidized bed technology, designated as the swirling fluidized bed (SFB), was investigated for its heat transfer characteristics when operating with Geldart type D particles. Unlike conventional fluidized beds, the SFB imparts secondary swirling motion to the bed to enhance lateral mixing. Despite its excellent hydrodynamics, its heat transfer characteristics have not been reported in the published literature. Hence, two different sizes of spherical PVC particles (2.61 mm and 3.65 mm) with the presence of a center body in the bed have been studied at different velocities of the fluidizing gas. The wall-to-bed heat transfer coefficients were measured by affixing a thin constantan foil heater on the bed wall. Thermocouples located at different heights on the foil show a decrease in the wall heat transfer coefficient with bed height. It was seen that only a discrete particle model which accounts for the conduction between the particle and the heat transfer surface and the gas-convective augmentation can adequately represent the mechanism of heat transfer in the swirling fluidized bed.  相似文献   

17.
Characteristics of heat transfer were investigated in a three-phase circulating fluidized bed whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of gas and liquid velocities, particle size (0.5–3.0 mm), solid circulation rate (2.0–6.5 kg/m2 s), and surface tension (47.53–72.75×10−3 N/m) of liquid phase on the heat transfer coefficient were examined. It was found that the heat transfer coefficient (h) between the immersed vertical heater and the riser proper of the three-phase circulating fluidized bed increased with increase in gas and liquid velocities, but did not change considerably with a further increase in liquid velocity, even in the higher range. The value of heat transfer coefficient increased gradually with increase in the size of fluidized solid particles without exhibiting the local minimum, which represented that there was no bed contraction in three-phase circulating fluidized beds due to the higher liquid velocity. The heat transfer system could attain a stabilized condition more easily with increase in particle size. The value of heat transfer coefficient increased with increase in solid circulation rate in all the cases studied due to the increase of solid holdup in the riser. The value of heat transfer coefficient decreased with increase in surface tension of liquid phase, due to the decrease of bubbling phenomena and bubble holdup. The decrease in liquid surface tension could lead to an increase in elapsed time from which the temperature difference between the heater surface and the riser became an almost constant value. The experimentally obtained values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

18.
The heat transfer coefficient, h, was measured using a cylindrical heater vertically immersed in liquid‐solid and gas‐liquid‐solid fluidized beds. The gas used was air and the liquids used were water and 0.7 and 1.5 wt‐% carboxymethylcellulose (CMC) aqueous solutions. The fluidized particles were sieved glass beads with 0.25, 0.5, 1.1, 2.6, and 5.2 mm average diameters. We tried to obtain unified dimensionless correlations for the cylinder surface‐to‐liquid heat transfer coefficients in the liquid‐solid and gas‐liquid‐solid fluidized beds. In the first approach, the heat transfer coefficients were successfully correlated in a unified formula in terms of a modified jH‐factor and the modified liquid Reynolds number considering the effect of spatial expansion for the fluidized bed within an error of 36.1 %. In the second approach, the heat transfer coefficients were also correlated in a unified formula in terms of the dimensionless quantities, Nu/Pr1/3, and the specific power group including energy dissipation rate per unit mass of liquid, E1/3D4/3l, within a smaller error of 24.7 %. It is also confirmed that a good analogy exists between the surface‐to‐liquid heat transfer and mass transfer on the immersed cylinder in the liquid‐solid and gas‐liquid‐solid fluidization systems.  相似文献   

19.
汽液固三相流动沸腾传热计算与实验研究   总被引:4,自引:1,他引:3       下载免费PDF全文
对汽液固三相循环流化床中流动沸腾传热进行了理论分析和实验研究 ,在此基础上结合渐进模型及表面更新机理建立了汽液固三相流动沸腾传热模型 ,模型计算值和实验数据吻合较好 ,最大偏差在 18%以内  相似文献   

20.
The fluidization and heat transfer behaviors of a turbulent fluidized bed were investigated using computational fluid dynamics (CFD). The effects of inlet superficial velocity on heat transfer behaviors in a turbulent fluidized bed were analyzed and compared with those operated in other fluidization regimes. The effects of using particles belonging to different Geldart groups in a turbulent fluidized bed on fluidization and heat transfer behaviors were evaluated. For both fluidization regimes investigated, the solids temperature distribution during the heat transfer process became less uniform when the particle size was reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号