首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
Electrical discharge machining (EDM) is one of the earliest non-traditional machining processes. EDM process is based on thermoelectric energy between the work piece and an electrode. In electrical discharge machining (EDM), a process utilizing the removal phenomenon of electrical discharge in dielectric, the working fluid plays an important role affecting the material removal rate and the properties of the machined surface. Choosing the right dielectric fluid is critical for successful operations. This paper presents a literature survey on the use of dielectric fluids and also their effects in electrical discharge machining characteristics.  相似文献   

2.
Limited efforts have been made to transform electrical discharge machining to a green and sustainable machining process. Current electric discharge machining (EDM) processes use hydrocarbon or synthetic-based dielectric fluids. These fluids emit harmful vapors when they break down, raising concerns for machine operators and for the environment. Biodiesel (BD) has similar properties as conventional dielectric and it can be used in place of conventional dielectric fluids. This research aims to study the effects of biodiesel dielectric in EDM process, especially in micromachining. Experiments are carried out in both low and high energy settings, on bulk metallic glass (BMG) and titanium alloy (Ti-6Al-4 V) using 200-μm-diameter electrodes. Canola BD and sunflower BD are compared against conventional dielectric in terms of material removal rate and tool wear ratio. The experimental evidence showed that both canola and sunflower BD are able to outperform conventional dielectric, and thus suggesting that BD has the potential to replace conventional dielectric as to provide a more sustainable machining process in the future.  相似文献   

3.
Electrical discharge machining (EDM) is a non-conventional machining technique for removing material based on the thermal impact of a series of repetitive sparks occurring between the tool and workpiece in the presence of dielectric fluid. Since the machining characteristics are highly dependent on the dielectric’s performance, significant attention has been directed to modifying the hydrocarbon oil properties or introducing alternative dielectrics to achieve higher productivity. This article provides a review of dielectric modifications through adding powder to dielectric. Utilizing powder mixed dielectric in the process is called powder mixed EDM (PMEDM). In order to select an appropriate host dielectric for enhancing machining characteristics by adding powder, a brief background is initially provided on the performance of pure dielectrics and their selection criteria for PMEDM application follow by powder mixed dielectric thoroughly review. Research shows that PMEDM facilitates producing parts with predominantly high surface quality. Additionally, some studies indicate that appropriate powder selection increases machining efficiency in terms of material removal rate. Therefore, the role of powder addition in the discharge characteristics and its influence on machining output parameters are explained in detail. Furthermore, by considering the influence of the main thermo-physical properties and concentration of powder particles, the performance of various powder materials is discussed extensively. Since suitable powder selection depends on many factors, such as variations in EDM, machining scale and electrical and non-electrical parameter settings, a thorough comparative review of powder materials is presented to facilitate a deeper insight into powder selection parameters for future studies. Finally, PMEDM research trends, findings, gaps and industrialization difficulties are discussed extensively.  相似文献   

4.
Micro-electric discharge machining (??-EDM) is an important manufacturing process that is able to produce components and tools with micro-features. Improvement to this process has resulted in the use of powder mixed dielectric (PMD), which results in better surface quality and faster machining time. However, the presence of conductive powder in the dielectric fluid negatively affects the accuracy of the machining depth. This paper presents a novel method of suspending nanographite powder in dielectric fluid, using ultrasonic vibration of dielectric fluid, and using the number of discharge pulses in order to improve the accuracy of the PMD-??-EDM process. As a result, machining time has been significantly reduced up to 35%, accuracy increased, and the appearance of micro-cracks on the workpiece surface has been reduced.  相似文献   

5.
An experimental investigation of tool wear in electric discharge machining   总被引:1,自引:1,他引:0  
In this study, the variations of geometrical tool wear characteristics – namely, edge and front wear – and machining performance outputs – namely, workpiece removal rate, tool wear rate, relative wear and workpiece surface roughness – were investigated with varying machining parameters. Experiments were conducted using steel workpieces and round copper tools with a kerosene dielectric under different dielectric flushing conditions (injection, suction and static), discharge currents and pulse durations. The experiments have shown that machining parameters and dielectric flushing conditions had a large effect on geometric tool wear characteristics and machining performance outputs. Additionally, published research on tool wear is presented in detail in this study.  相似文献   

6.
白雪  张勤河  李田田  张亚 《机械工程学报》2012,48(7):186-192,198
混粉准干式电火花加工以气、液、固三相流作为工作介质,能够有效改善气中加工短路率高、加工效率低的问题。以纯净气体介质的击穿理论为基础,对三相流工作介质的击穿机理进行理论分析,阐明固、液分散相的作用机制。建立混粉准干式电火花加工的极间电场强度表达式,给出三相流中加工的放电间隙计算式,从理论上证明分散相的加入使得混粉准干式电火花加工的放电间隙较气中加工大,指出放电间隙增大是加工效率提高的一个重要原因。进行压缩空气中和三相流介质中的放电加工对比试验。测得两种加工介质中的放电间隙值,试验证实三相流工作介质具有放电间隙增大效果。测得放电电压波形,证实气体连续相中固、液分散相的加入能够降低短路率,提高加工稳定性。  相似文献   

7.
Sinking EDM in water-in-oil emulsion   总被引:2,自引:2,他引:0  
In this paper, a new type of sinking electric discharge machining (EDM) dielectric–water-in-oil (W/O) emulsion is proposed, and the machining characteristics of W/O emulsion are investigated by comparing with that of kerosene. In the experiments, machining parameters such as the dielectric type, peak current, and pulse duration are changed to explore their effects on machining performance, including the material removal rate (MRR), relative electrode wear rate (REWR), and surface roughness. Experimental results revealed that W/O emulsion could be used as the dielectric fluid of sinking EDM and adopting long pulse duration and large peak current could lead to obtaining higher MRR than kerosene. Compared with kerosene, W/O emulsion is observed to cause lower carbon adhered to the electrode surface. Therefore, its REWR is higher. Statistics of the discharge waveform show that more stable discharge processes can be obtained by using W/O emulsion compared with kerosene. Furthermore, W/O emulsion is more economical and more environmentally friendly than kerosene, and it could be an alternative to kerosene in sinking EDM application.  相似文献   

8.

Wire electrical discharge machining is a non-traditional cutting process for machining of hard and high strength materials. This study analyzed the effects of the main input parameters of wire electrical discharge machining of ASP30 steel (high alloyed Powder metallurgical [PM] high speed steel) as the workpiece on the material removal rate and surface roughness. The input parameters included spraying pressure and electric conductivity coefficient of the dielectric fluid, linear velocity of the wire and wire tension. The machined surface quality was evaluated using SEM pictures. Results indicated that increasing the spraying pressure of dielectric fluid leads to a higher material removal rate and surface roughness and that increasing the wire tension, linear velocity of wire, and electric conductivity of the dielectric fluid decreases the material removal rate and surface roughness.

  相似文献   

9.
In microelectrodischarge machining (micro-EDM), dielectric plays an important role during machining operation. The machining characteristics are greatly influenced by the nature of dielectric used during micro-EDM machining. Present paper addresses the issues of micro-EDM utilizing different types of dielectrics such as kerosene, deionized water, boron carbide (B4C) powder suspended kerosene, and deionized water to explore the influence of these dielectrics on the performance criteria such as material removal rate (MRR), tool wear rate (TWR), overcut, diameteral variance at entry and exit hole and surface integrity during machining of titanium alloy (Ti-6Al-4V). The experimental results revealed that MRR and TWR are higher using deionized water than kerosene. Also, when suspended particles, i.e., boron carbide-mixed dielectrics are used, MRR is found to increase with deionized water, but TWR decreases with kerosene dielectric. Further analysis is carried out with the help of scanning electron microscope (SEM) micrographs, and it is found that the thickness of white layer is less on machined surface when deionized water is used as compared to kerosene. Also, a comparative study of machining time has been carried out for the four types of dielectrics at different machining parametric settings. Furthermore, the investigation on the machined surface integrity and wear on microtool tip have also been done in each type of the dielectrics with the help of SEM micrographs and optical photographs. Hence micro-EDM machining on Ti-6Al-4V work material with B4C-mixed dielectrics is performed in the investigation and reported the performance criteria of the process. It can be concluded from the research investigation that there is a great influence of mixing of boron carbide additive in deionized water dielectrics for enhancing machining performance characteristics in micro-EDM during microhole generation on Ti-6Al-4V alloy.  相似文献   

10.
大面积混粉电火花加工机理探讨   总被引:7,自引:1,他引:7  
论述了大面积混粉电火花加工的机理,分析了大面积混粉电火花加工能提高加工表面粗糙度的原因,指出放电蚀坑大儿浅,并且在加工表面分布均匀是大面积混粉电火花加工提高加工表面粗糙度的根本原因,通过在普通和混粉工作液中的大面积电火花加工实验对比,证明以上结论的正确性。  相似文献   

11.
M.L. Jeswani 《Wear》1981,72(1):81-88
The performances of kerosene and distilled water as the dielectric fluid in electrical discharge machining (EDM) were compared over the pulse energy range 0.72 – 288 mJ. Machining in distilled water resulted in a higher metal removal rate and a lower wear ratio than in kerosene when a high pulse energy range (72 – 288 mJ) was used. With distilled water, the machining accuracy was poor but the surface finish was better. Electron microprobe analysis revealed that the deposition of tool material (copper) on the work surface (high carbon steel) was low when machining took place in distilled water at a high pulse energy (288 mJ) and in kerosene at a low pulse energy (72 mJ). It is concluded that distilled water may be used as a dielectric fluid in EDM at a high pulse energy range.  相似文献   

12.
This study addresses micro-slit EDM machining feasibility using pure water as the dielectric fluid. Experimental results revealed that pure water could be used as a dielectric fluid and adopting negative polarity EDM machining could obtain high material removal rate (MRR), low electrode wear, small slit expansion, and little machined burr, compared to positive polarity machining. In comparing kerosene versus pure water, pure water was observed to cause low carbon adherence to the electrode surface. Also discharge energy does not decrease and the discharge processes are not interrupted. Therefore, MRR was higher, and related electrode wear ratio compared to kerosene use was lower. In a continual EDM with multi-slit machining, kerosene will cause carbon element adherence, creating an initially high MRR and electrode wear, with rapid decline. However, pure water will not cause carbon element adherence on the electrode surface, so MRR and electrode wear is always stable in this process.  相似文献   

13.
Abstract

Powder mixed EDM (PMEDM) is recognized as an advanced and innovative technique with enhanced performance and limited drawbacks in comparison to conventional EDM method. This study investigates the effect of powder particle size, various powder concentrations (Cp), and surfactant concentrations (Cs) on the performance of EDM. Since the machining characteristics are highly dependent on the dielectric performances, significant attention has been directed to introduce Cr powder and Span-20 surfactant into the dielectric fluid to achieve higher productivity and enhanced surface integrity. The EDM machining was carried out on AISI D2 hardened steel through ´Plug & Plaý dielectric circulating system attached to the main machine in order to evaluate the machining performances (i.e. MRR, EWR, and Ra). Interestingly, machining performance was improved with combination of Cr powder mixed and span-20 surfactant. By comparing the performance of span-20 surfactant and micro-nano chromium, the result within selected parameters shows that the span-20 surfactant and nano-chromium is the better choice for the EDM of AISI D2 hardened steel. In the machinability studies, the EDM machining of AISI D2 hardened steel by using span-20 surfactant and nano-chromium has exhibited the excellent machining performances, which led to 45.08% MRR enhancement and 68.89% Ra enhancement comparing to micro-chromium powder and span-20 surfactant led to 35.28% MRR and 28.96% Ra. Furthermore, cost analysis revealed that the nano-Cr powder size was approximately 4 times more economical than micro-Cr powder in machining of AISI D2 hardened steel, although the price for 1?kg is quite expensive.  相似文献   

14.
The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and power functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes very accurately. The variation of exponential model parameters with machining parameters is presented.  相似文献   

15.
Although electrical discharge machining is essentially a material removal process, efforts have been made in the recent past to use it as a surface treatment method. An additive powder in the dielectric medium affects the sparking action and helps in improving the surface properties. It may melt at the high temperature of the plasma channel and alloy with the machined surface under appropriate machining conditions. Breakdown of the hydrocarbon dielectric contributes carbon to the plasma channel. In this paper, changes in surface properties of oil-hardening non-shrinkable die steel after machining with manganese powder suspended in kerosene dielectric medium have been investigated. Results show improvement in microhardness by 73%, and no microcracks on the machined surface. X-ray diffraction analysis of the machined surfaces reveals the transfer of manganese and carbon from the plasma channel in the form of manganese carbide. Quantitative analysis of chemical composition by optical emission spectrometer confirms significant increase in the percentages of manganese and carbon.  相似文献   

16.
In this study, a new method for machining of nonconductive ceramic workpieces in electric discharge machining (EDM) was developed. Machining surfaces of nonconductive workpieces were coated with a conductive layer (CL) and graphite powder was added to dielectric fluid for machining. Al2O3, ZrO2, SiC, B4C and glass workpiece samples were machined by using the method. Different machining conditions were tested for each sample and optimum machining parameters were determined. Effect of electrical conductivity, thermal conductivity and melting point of workpieces on material removal rate (MRR) was investigated. Optical microscope and SEM (Scanning Electron Microscope) surface photographs of workpieces taken after machining are presented and discussed.  相似文献   

17.
利用国产铝粉作为混粉工作液的粉末添加剂,进行混粉电火花加工试验研究。结果表明,国产铝粉用于混粉电火花加工对于改善加工质量和提高加工效率都具有明显效果。  相似文献   

18.
Pipe cutting technology plays an important role in the process of offshore platforms decommissioning, as many devices such as tubing, drill pipe, and casing need to be decommissioned. In this study, a novel cutting pipe technology based on electro-discharge machining (EDM) is proposed, and a cutting pipe mechanism is developed to cut the pipes for decommissioning offshore platforms. The machining principles and characteristics of the technique are described. The effects of machining parameters, including tool polarity, dielectric fluid, electrode material and width, pulse on-time, pulse off-time, peak voltage, and electrode rotation speed to machining performance, are investigated. The material removal rate (MRR) of the machined casing and tool electrode wear ratio (EWR) is obtained based on the calculation of the percentage of mass loss per machining time. The experimental results show that a better cutting performance can be obtained with negative tool polarity at the conditions of dielectric fluid of emulsion, pulse on-time of 500 μs, pulse off-time of 200 μs, peak voltage of 70 V, copper electrode width of 28 mm, and electrode rotation speed of 250 rpm is a better choice. Additionally, the cutting slots surface has been investigated by the means of SEM. The cutting slots machined by the rotary EDM are clean and smooth.  相似文献   

19.
The Effect of Cutting Parameters on Workpiece Surface Roughness in Wire EDM   总被引:2,自引:0,他引:2  
In this study, the variation of workpiece surface roughness with varying pulse duration, open circuit voltage, wire speed and dielectric fluid pressure was experimentally investigated in Wire Electrical Discharge Machining (WEDM). Brass wire with 0.25 mm diameter and SAE 4140 steel with 10 mm thickness were used as tool and workpiece materials in the experiments, respectively. It is found experimentally that the increasing pulse duration, open circuit voltage and wire speed, increase the surface roughness whereas the increasing dielectric fluid pressure decreases the surface roughness. The variation of workpiece surface roughness with machining parameters is modelled by using a power function. The level of importance of the machining parameters on the workpiece surface roughness is determined by using analysis of variance (ANOVA).  相似文献   

20.
This study investigated the influences of dielectric characteristics, namely, electrical conductivity, oxidability, and viscosity on the electrical discharge machining (EDM) of titanium alloy. A new kind of compound dielectric with optimal processing effect was developed based on the identified effects. Comparative experiments on titanium alloy EDM in compound dielectric, distilled water, and kerosene were performed to analyze the difference in material removal rate (MRR), relative electrode wear ratio (REWR), and surface roughness (SR). The experimental results revealed that titanium alloy EDM in compound dielectric achieved the highest MRR, a lower REWR than that in kerosene, and better SR and fewer micro-cracks than that in distilled water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号