首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outdoor operation and monitoring of amorphous silicon (a-Si) solar modules present unique features when compared to the more traditional and quite well understood operation of the crystalline silicon (c-Si) technology. The peculiarities of a-Si contrast to such extent with those of c-Si solar cells that in the field, while the former performs better during summer, the latter is more efficient in winter. Concepts usually applied to describe phenomena in c-Si devices are often inadequate to describe the performance of a-Si cells. When looking at module performance, the fill factor (FF) can be regarded as one of the characteristic photovoltaic quantities of major interest. Under outdoor illumination, cells are seasonally exposed to different solar spectral contents and intensities, which vary considerably from summer to winter. The FF depends on both the quality (spectrum) and quantity (irradiation) of the incident light. In this context, we report results showing spectral effects on the FF of amorphous silicon solar modules deployed outdoors. While “blue” spectra improved the FF of a-Si devices, the contrary was observed for “red” spectra. The voltage-dependent spectral response of a-Si devices is also described and quantified. Our results reveal that a-Si modules can perform quite well at low irradiations and mainly diffuse spectra. We, thus, conclude that in system sizing programmes, the performance of a-Si modules should be treated more precisely with respect to spectra, to reveal their true operational characteristics and advantages.  相似文献   

2.
If photovoltaic solar cells and modules are to be used as a major source of power generation it is important to have a good knowledge and understanding of their long-term performance under different climatic and operating conditions. A number of studies of the long-term performance of commercially available photovoltaic modules manufactured using different technologies have now been reported in the literature. These have shown clear differences in the seasonal and long term performance and stability of different solar cell techniques. In addition to general module engineering factors that result in a loss of performance in all modules some types of solar cells, such as those made from thin film amorphous silicon (a-Si:H), also suffer specific losses in performance due to fundamental material changes, such as photodegradation or the Staebler–Wronski effect (SWE). A field evaluation of the long term performance of state-of-the-art crystalline and amorphous silicon photovoltaic modules in Australian conditions is currently being undertaken at Murdoch University. The initial results from this monitoring program are reported. This paper also reports on laboratory and field studies being undertaken on the nature of the Staebler–Wronski effect in amorphous silicon solar cells and how the stability of these cells is affected by different operating conditions. Based on a mechanism for the SWE in a-Si:H solar cells developed as a result of our research we propose a number of possible ways to reduce the Staebler–Wronski effect in a-Si:H solar cells.  相似文献   

3.
In this study, it was investigated how changes in spectral solar radiation effects the output of photovoltaic modules. First, there was a precise examination of the seasonal changes in spectral solar radiation. Consequently, it was found that the ratio of spectral solar radiation available for solar cell utilization, to global solar radiation, changes from season to season. It varied, from 5% for polycrystalline silicon cells, to 14% for amorphous silicon cells, throughout one year. Obviously a cell made from amorphous silicon is more severely effected by seasonal variations.

Next, the seasonal changes of photovoltaic module output were examined. The output was calculated by the conventional output evaluation method using irradiance and cell temperature. This calculated value and the subsequently measured value were accumulated and the two values compared. As a result, the accumulated output of photovoltaic modules was confirmed as changing seasonally in the same way as spectral solar radiation. The output ratio of polycrystalline silicon was found to change by 4%, while that of amorphous silicon varied by 20%. Hence the seasonal variations in spectral solar radiation should be taken into account for optimum photovoltaic power system design.  相似文献   


4.
Encapsulated and series-connected amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) based thin film silicon solar modules were developed in the superstrate configuration using an aluminum foil as temporary substrate during processing and a commodity polymer as permanent substrate in the finished module. For the development of μc-Si:H single junction modules, aspects regarding TCO conductivity, TCO reduction, deposition uniformity, substrate temperature stability and surface morphology were addressed. It was established that on sharp TCO morphologies where single junction μc-Si:H solar cells fail, tandem structures consisting of an a-Si:H top cell and a μc-Si:H bottom cell can still show a good performance. Initial aperture area efficiencies of 8.2%, 3.9% and 9.4% were obtained for fully encapsulated amorphous silicon (a-Si:H) single junction, microcrystalline silicon (μc-Si:H) single junction and a-Si:H/μc-Si:H tandem junction modules, respectively.  相似文献   

5.
The behavior of amorphous silicon∥micro crystalline silicon (a-Si∥μc-Si) tandem-type photovoltaic (PV) module is complex because the output current is limited by the lower current component cell. Also, the outdoor behaviors are not fully understood. The impact of environment factors on solar cell parameters of a-Si∥μc-Si PV module was quantitatively analyzed and the module was compared with other silicon-based PV modules (single crystalline silicon (sc-Si) and amorphous silicon (a-Si)). The contour maps of solar cell parameters were constructed as a function of irradiance and module temperature. The contour map of a-Si∥μc-Si PV modules is similar to that of a-Si modules. The results imply that output characteristics of a-Si∥μc-Si PV modules are mainly influenced by the a-Si top cell. Furthermore, the efficiency of a-Si∥μc-Si PV modules was compared other solar cell parameters and the contour map of efficiency is similar to that of fill factor.  相似文献   

6.
We have investigated the electrical energy yield of hydrogenated amorphous silicon (a-Si:H) single-junction and crystalline (c-Si) photovoltaic (PV) rooftop systems operated under distinct four seasons. The impact of the module type and installed tilt angle on the annual electrical energy yield has been monitored and then compared with the data predicted by the computer simulation. Despite a good temperature coefficient and less shading effect of a-Si:H single-junction modules, the energy output gain of the a-Si:H single-junction PV generator is only 2.7% compared to the c-Si PV generator installed using c-Si PV modules. It is inferred that a nominal rated power of the a-Si:H single-junction modules determined by an indoor light soaking test is not suitable for the design of PV systems operated under distinct four seasons. Thus, the nominal rated power of the a-Si:H single-junction PV modules should be determined through a proper outdoor exposure test considering thermal annealing and light soaking effects under various seasonal weather conditions. In addition, it is found that the performance of the Si-based PV rooftop systems operated under distinct four seasons could be improved by simply toggling the tilt angle considering the plane-of-array irradiance and snowfall effect.  相似文献   

7.
The influence of the operation temperature on the output properties of solar cells with hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon germanium (a-SiGe:H) photovoltaic layers was investigated. The output power after longtime operation of an a-Si:H single junction, an a-Si:H/a-Si:H tandem, and an a-Si:H/a-SiGe:H tandem solar cell was calculated based on the experimental results of two types of temperature dependence for both conversion efficiency and light-induced degradation. It was found that the a-Si:H/a-SiGe:H tandem solar cell maintained a higher output power than the others even after longtime operation during which a temperature range of 25°C to 80°C. These results confirm the advantages of the a-Si:H/a-SiGe:H tandem solar cell for practical use, especially in high-temperature regions.  相似文献   

8.
The paper presents the results of experimental studies on changes in the efficiency of p-i-n-structured solar cells based on hydrogenated amorphous silicon (a-Si : H) with different thicknesses of the intrinsic i-region under prolonged illumination. An improvement in the efficiency of solar cells owing to light exposure and the Staebler–Wronski effect were observed. It was established that a-Si : H solar cells have a predetermined structure and parameters that influence the Staebler–Wronski effect, which must be taken into consideration in photocell construction.  相似文献   

9.
In order to improve the conversion efficiency of amorphous silicon (a-Si:H) alloy p-i-n solar cells, the original p-a-Si:H window layer is substituted by the boron-doped amorphous diamond (a-D:B) films deposited using filtered cathodic vacuum arc technology. The microstructural, optical and electrical properties as functions of the boron concentrations in the films were, respectively, evaluated by an X-ray photoemission spectroscopy, an ultraviolet-visible spectrometer and a semiconductor parameter analyzer. The photovoltaic parameters of the solar cell modules were also detected as functions of boron concentration. It has been shown that the conductive a-D:B films could be obtained and still remained a wide optical gap. The p-i-n structural amorphous silicon solar cell using the a-D:B window layer increased the conversion efficiency by a roughly 10% relative improvement compared to the conventional amorphous silicon solar cell because of the enhancement of short wavelength response.  相似文献   

10.
TCO and light trapping in silicon thin film solar cells   总被引:6,自引:0,他引:6  
For thin film silicon solar cells and modules incorporating amorphous (a-Si:H) or microcrystalline (μc-Si:H) silicon as absorber materials, light trapping, i.e. increasing the path length of incoming light, plays a decisive role for device performance. This paper discusses ways to realize efficient light trapping schemes by using textured transparent conductive oxides (TCOs) as light scattering, highly conductive and transparent front contact in silicon p–i–n (superstrate) solar cells. Focus is on the concept of applying aluminum-doped zinc oxide (ZnO:Al) films, which are prepared by magnetron sputtering and subsequently textured by a wet-chemical etching step. The influence of electrical, optical and light scattering properties of the ZnO:Al front contact and the role of the back reflector are studied in experimentally prepared a-Si:H and μc-Si:H solar cells. Furthermore, a model is presented which allows to analyze optical losses in the individual layers of a solar cell structure. The model is applied to develop a roadmap for achieving a stable cell efficiency up to 15% in an amorphous/microcrystalline tandem cell. To realize this, necessary prerequisites are the incorporation of an efficient intermediate reflector between a-Si:H top and μc-Si:H bottom cell, the use of a front TCO with very low absorbance and ideal light scattering properties and a low-loss highly reflective back contact. Finally, the mid-frequency reactive sputtering technique is presented as a promising and potentially cost-effective way to up-scale the ZnO front contact preparation to industrial size substrate areas.  相似文献   

11.
A systematic investigation has been made on annual accumulated generated PV power from different solar arrays consisting of three kinds of silicon-based solar cells. To clarify seasonal output power variations with temperature in c-Si and a-Si cells might be an important issue for the operations of PV system. It has been shown from the results that electric output power from a-Si array in summer is 20% larger than that from c-Si. On the other hand, in winter, this scene should be reverted. However, output power from c-Si array is only 5% larger than that from a-Si. The analyzed data also shows that annual accumulated electric power generated from a-Si array corresponds to 90% of its nominal efficiency in the year. While in case of c-Si array, this ratio is about 84%.  相似文献   

12.
Stability against light soaking was studied for amorphous silicon (a-Si:H) solar cells using three different i-layers; (a) device-quality a-Si:H (standard a-Si:H) with bandgap of 1.75 eV, (b) narrow bandgap (1.55 eV) a-Si:H fabricated by Ar* chemical annealing and (c) a-Si:H(Cl) fabricated from SiH2Cl2. Both the narrow bandgap a-Si:H and the a-Si:H(Cl) solar cells showed much improved stability than that of the standard a-Si:H solar cells: e.g., fill factor of the narrow bandgap a-Si:H cell only slightly decreased from 56% to 53%, while that of the standard a-Si:H cell degraded from 62% to 51%. In addition, mobility–lifetime products of the a-Si:H(Cl) cell also exhibited improved stability than that of the standard a-Si:H solar cell.  相似文献   

13.
The light-soaked and annealing behaviors for silicon (Si)-based thin-film single-junction solar cells fabricated near the phase boundary using a very-high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) technique are investigated. The hydrogen dilution ratio is changed in order to achieve wide band gap hydrogenated amorphous Si (a-Si:H) and narrow band gap hydrogenated microcrystalline Si (μc-Si:H) absorbers. Just below the a-Si:H-to-μc-Si:H transition, highly hydrogen-diluted a-Si:H solar cells with a good stability against light-soaking and fast annealing behavior are obtained. In contrast, the solar cell fabricated at the onset of the μc-Si:H growth is very unstable and its annealing behavior is slow. In the case of μc-Si:H solar cells with the crystal volume fraction of 43–53%, they show the lowest light-induced degradation among the fabricated solar cells. However, it is very difficult to recover the degraded μc-Si:H solar cells via thermal annealing.  相似文献   

14.
Effects of cyanide (CN) treatment with hydrogenated amorphous silicon (a-Si:H) films have been investigated. The decrease of ΔV/V was observed in cyanide treated a-Si:H films and the successive thermal annealing at 200°C after CN treatment induced the further reduction of the ΔV/V. XPS spectra show the indirect evidence that the cyanide species is present within 10 nm from the hydrogenated amorphous silicon surface. The results of CN treatment with a-Si:H solar cells are demonstrated.  相似文献   

15.
Narrow band gap (1.5 eV) hydrogenated amorphous silicon (a-Si:H) were fabricated by a chemical annealing technique using noble gases (Ar, He, Ne). Although hydrogen content in the film was reduced to 1 atm% and band gap was decreased to 1.52 eV, high photoconductivity and large mobility–lifetime products were maintained and no marked changes in the short-range structure was found. Using these narrow band gap a-Si:H for photoactive layer in n-i-p solar cells, reasonable photovoltaic performances were obtained, i.e., open-circuit voltage of 0.71 V and fill factor of 57%. Also enhanced red response was observed with the 1.58 eV band gap i-layer solar cell prepared on textured substrate.  相似文献   

16.
A structure is developed to help improve the TCO/p contact and efficiency of the solar cell. A p-i-n amorphous silicon (a-Si:H) solar cell with high-conversion efficiency is presented via use of a double p-type window layer composed of microcrystalline silicon and amorphous silicon carbide. The best efficiency is obtained for a glass/textured TCO/p-μc-Si:H/p-a-SiC:H/buffer/i-a-Si:H/n-μc-Si:H/GZO/Ag structure. Using a SnO2/GZO bi-layer and a p-type hydrogenated microcrystalline silicon (p-μc-Si:H) layer between the TCO/p-a-SiC:H interface improves the photovoltaic performance due to reduction of the surface potential barrier. Layer thickness, B2H6/SiH4 ratio and hydrogen dilution ratio of the p-μc-Si:H layer are studied experimentally. It is clearly shown that the double window layer can improve solar cell efficiency. An initial conversion efficiency of 10.63% is achieved for the a-Si:H solar cell.  相似文献   

17.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,保持衬底温度在125℃沉积硅薄膜材料及电池,研究了硅烷浓度、辉光功率等沉积参数对材料和电池性能的影响。在125℃的低温条件下,通过优化沉积工艺,在玻璃衬底和PET塑料衬底上分别制备出效率达到6.8%和3.9%的单结非晶硅电池。在PET衬底上,将低温沉积非晶硅电池的技术应用于的叠层电池的顶电池,制备出效率为4.6%的非晶/微晶硅叠层电池。  相似文献   

18.
We have studied the fabrication of amorphous silicon (a-Si : H) p-i-n solar cells using an ion shower doped n+-layer. The p-i-n cells with ion-doped n+-layer exhibited open-circuit voltage of > 0.8 V, fill factor of > 0.62 and conversion efficiency of > 8.4% when the ion acceleration voltage was between 3 and 7 kV. The a-Si : H p-i-n solar cell fabricated under an optimized ion-doping condition exhibited an open-circuit voltage of 0.84 V, a fill factor of 0.66 and a conversion efficiency of 9.9% which was very similar to those of conventional a-Si : H p-i-n cells fabricated in the same deposition chamber. Therefore, ion shower doping technique can be applied to fabricate large area, high performance a-Si : H p-i-n solar cells.  相似文献   

19.
Our progress in amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction solar cell technology and current understanding of fundamental device physics are presented. In a-Si:H/c-Si cells, device performance is strongly dependent on the quality of the a-Si:H/c-Si heterojunction. Four topics are crucial to minimize recombination at the junction and thereby maximize cell efficiency: wet-chemical pre-treatment of the c-Si surface prior to a-Si:H deposition; optimum a-Si:H doping; thermal and plasma post-treatments of the a-Si:H/c-Si structure. By optimizing these aspects using specifically developed characterization methods, we were able to realize (n)a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si cells with up to 18.5% and 19.8% efficiency, respectively.  相似文献   

20.
Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (σph), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p–i–n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100 mw/cm2) at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号