首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slug flow is one of the most observed gas-liquid flow patterns in pipes. Owing to its high occurrence, the estimation of slug characteristics is essential for many engineering processes. The slug flow characterization is usually carried out by models and correlations previously calibrated with experimental data generated by the interpretation of voltage or instantaneous liquid holdup time-series. Historically, this interpretation required algorithms that depended on subjective parameters, which created high dispersion on the data. This paper proposes a new signal processing analysis, which does not require any subjective parameter. A statistical algorithm is used to calculate the film and slug cut threshold values, the disregard cut value to group slug pulses, and the disregard cut value to remove slug pulses, which are required to determine the slug characteristics. An experimental data set was used to validate the proposed methodology. The consistency check process followed two independent ways, both with good results. Based on the performance against the experimental data, the proposed algorithm is recommended for slug flow characterization.  相似文献   

2.
Two-phase flow measurements are very common in industrial applications especially in oil and gas areas. Although some works in image segmentation have analyzed gas–liquid slug flow along vertical pipes, few approaches have focused on horizontal experiments. In such conditions, the detection of the Taylor bubble is challenging due the great amount of small bubbles in the slug area and, thus, requires a special treatment in order to separate gas from liquid phases. This article describes a new technique that automatically estimates bubble parameters (e.g. frequency, dimension and velocity) through video analysis of high-speed camera measurements in horizontal pipes. Experimental data were obtained from a flow test section where slug flows were generated under controlled conditions. Image processing techniques such as watershed segmentation, top-hat filtering and H-minima transform were applied to detect and estimate bubble contour and velocities from the observed images. Finally, the estimated parameters were compared to theoretical predictions, showing good agreement and indicating that the proposed technique is a powerful tool in the investigation of two-phase flow.  相似文献   

3.
This study details the problem of the ultrasonic detection of large bubbles rising rapidly in an upward gas–liquid two-phase pipe flow and proposes a new method to solve the problem. The proposed method uses two types of information, namely the echo intensity reflected by large bubbles and the Doppler frequency, which have different features in interface detection. The method using the Doppler frequency performs well in the detection of large bubbles regardless of the interface condition, whereas the method using the echo intensity has trouble in detecting an uneven interface. In contrast, the information of the echo intensity guarantees high accuracy of the interface detection even if that of the Doppler frequency has low accuracy for the detection owing to many small bubbles existing in the liquid film. Here, the two methods are combined to overcome their problems, and a validation test confirms that the results of the combined method agree well with the results of image processing. As demonstrations of the proposed method, the slug frequency, velocity, and airflow rate of large bubbles in an air-lift pump are obtained. The results confirm that the proposed method can be adopted for the high velocity of slug flow in various applications.  相似文献   

4.
Multiphase flow measurement devices are significantly affected by the flow pattern, such as, e.g., slug flow, leading to large uncertainties. In this context, the slug flow pattern in horizontal pipes is investigated with the aim of finding a statistical characterization of the structures in space and time. For this, two different instances of slug flow are analyzed with a snapshot proper orthogonal decomposition and an additional mode coupling algorithm, which provides an energy-ranked mode basis of the underlying coherent structures. For the considered flows, the most energetic mode pair has been identified with the corresponding slugging structures. Thereby, the temporal and spatial information of these mode pairs enables a statistical characterization of the slugs. In this context, a length scale, a dominant frequency, and an energy representation of the slugging structures are obtained from this method.  相似文献   

5.
An optical method including infrared ray and laser was developed to discriminate flow pattern, and detect liquid slug and pig in horizontal gas–liquid pipe. Based on the principle that infrared ray attenuates differently during penetrating gas and liquid, the infrared ray method was developed to discriminate flow pattern and detect liquid slug. In experiment, infrared ray was emitted on one side of the transparent pipe, and detected on the other side. Simultaneously, a signal of output voltage that is proportional to the intensity of infrared ray detected was generated and recorded. A series of experiments in horizontal air/water loop were carried out to generate bubble, stratified smooth, wavy and intermittent flow, and the output voltages under the four flow patterns were analyzed. The flow patterns can be discriminated by characteristics of output voltage. Meanwhile, the velocity and frequency of liquid slug were measured by this method, and the results were consistent with that calculated by formulas. However, infrared ray is easily affected by interface between gas and liquid, a laser method was explored to detect pig. The laser method is similar to infrared ray, a laser beam was emitted and detected and then a signal of output voltage was recorded. The results from pigging experiments show that the laser method could correctly detect the passing of a pig. The combined use of infrared ray and laser method could rightly detect pig and pigging slug during pigging operation.  相似文献   

6.
7.
Slug flow is an intermittent two-phase flow pattern that provokes undesirable pressure variations in pipes. Mathematical models are commonly used to study these variations; so that it is necessary to know the experimental liquid-slug length, Taylor-bubble length, and pressure drop to validate such mathematical models.In this work, we experimentally studied the water-air slug flow through an acrylic pipe loop 6 m long and 0.01905 m internal diameter. We assembled infrared sensors on the acrylic pipe to get voltage signals accordingly to the presence of liquid-slugs or Taylor-bubbles. We applied Fourier transform on the voltage signals to obtain dominant frequencies to determining the liquid-slug length.Moreover, we obtained the cross-correlation function to get the delay time between two groups of the voltage signals to determine the velocity of Taylor-bubbles. Additionally, we measured the liquid-slug length by video technique and pressure drop with a digital manometer. The liquid-slug lengths obtained by using dominant frequencies are in agreement with the ones measured by video technique.On the other hand, Taylor-bubbles could touch or not the wall pipe at different inclination pipe angles; this affects pressure drop. Then, we observed the inclination angle when the Taylor-bubble detaches from the wall of the pipe, under different flow conditions. We found that the Taylor-bubble detaching angle is 45°, and as the inclination angle is higher, the slug-liquid and Taylor-bubble lengths are smaller. The detaching angle can be used as a criterion to neglect the gas shear-stress into mathematical models to improve predictions of the hydrodynamic behavior of slug flow.  相似文献   

8.
This paper proposes a measurement technique for two-phase bubbly and slug flows using ultrasound. In order to obtain both liquid and gas velocity distributions simultaneously, a new technique for separating liquid and gas velocity data is developed. The technique employs a unique ultrasonic transducer referred to as multi-wave transducer (TDX). The multi-wave TDX consists of two kinds of ultrasonic piezoelectric elements which have different resonant frequencies. The central element of 3 mm diameter has a basic frequency of 8 MHz and the outer element has a basic frequency of 2 MHz. The multi-wave TDX can emit the two ultrasonic frequencies independently. In our previous investigations, both elements were connected with two ultrasonic velocity profile (UVP) monitors to measure liquid and bubble velocity distributions. However, the technique was limited to the measurement of bubbly flows at low void-fraction. Furthermore, it was impossible to synchronize the instantaneous velocities of liquid and bubbles because of the facility limitation. In order to overcome these disadvantages, cross-correlation method is employed for the measurements in this study. In order to apply the technique to flow measurements, ultrasound pressure fields are measured. As a result, it is found that the TDX must be set 20 mm away from the test section. The technique is applied to measuring bubbly and slug flows. By the combination of 2 and 8 MHz ultrasonic echo signals, the echo signals are distinguished between reflected from particles and bubbles. Compared with the results of obtaining with the multi-wave method and a high-speed camera, it is confirmed that the technique can separate the information of liquid and gas phases at a sampling rate of 1000 Hz.  相似文献   

9.
Backlight imaging tomography is used to experimentally investigate interfacial structures of gas–liquid two-phase flow in circular tubes. The tomography method is based on the attenuation of visible light that causes the inside of the liquid phases to be colored with dye. Increasing the number of light projections provides accurate phase distributions to be reconstructed by a linear backward projection scheme. After the reconstruction performance is examined with numerical simulations for several test cases, the method is applied to slug flows that have complicated 3D interfaces from turbulence. Interfacial structures are compared between straight and helical tubes to determine the effect of centrifugal acceleration. The result demonstrates that centrifugal acceleration provides a liquid-clinging layer on the inner wall against gravity while a high-speed collision of liquid with the top wall happens in a straight tube.  相似文献   

10.
Various refrigerant flow patterns can produce a range of noise types according to their cycle conditions. Consequently, the identification of flow patterns in a tube is crucial to reducing refrigerant-induced noise. Because of the obstacles involved in identifying them accurately by experiment, in this paper, these flow patterns are estimated from the flow pattern map. Working from the assumption that the refrigerant-induced noise for an air conditioner in the heating mode comes from slug flow in the condenser-outlet pipe, the reduction of refrigerant-induced noise by avoiding slug flow in a tube is examined. To fully understand the conditions under which the refrigerant-induced noise occurs, cycle simulator equipment for an outdoor unit is developed. With this cycle simulator, noise tests of 4-way cassette type indoor units are performed under the conditions that the refrigerant-induced noise occurs. Increasing the mass flux in a tube by reducing the diameter of the condenser-outlet pipe can avoid slug flow, and the refrigerant-induced noise can therefore be reduced. The results of the cycle simulator can be verified with an outdoor unit 5HP system multi air conditioner and the results are well in line with simulator results. This paper was recommended for publication in revised form by Associate Editor Yeon June Kang Hyung-Suk Han received a B.S. degree in Production and Mechanical Engineering from Pusan National University in 1996. He then went on to receive his M.S. and Ph.D. degrees from Pusan National University in 1998 and 2007, respectively. Dr. Han is currently a Senior Researcher at Defense Agency of Technology and Quality, Pusan, Korea. He is currently serving as a Co-Researcher of Noise and Vibration Analysis Laboratory in Pusan National University. Dr. Han’s research interests are in the area of the mechanical applications of noise and vibration including refrigerant-induced noise. Wei-Bong Jeong received a B.S. degree in Mechanical Engineering from Seoul National University in 1978. He then went on to receive his M.S. and Ph.D. degrees from KAIST in 1980 and from Tokyo Institute of Technology in 1990, respectively. Dr. Jeong is currently a Professor at the Mechanical Engineering at Pusan National University in Busan, Korea. He is currently serving as an Academic Director of the Korean Society for Noise and Vibration Engineering. Dr. Jeong’s research interests are in the area of the measurement and signal processing of noise and vibration, finite/boundary element programming of noise and vibration, fluid-structure interactions and acoustic-structure interactions.  相似文献   

11.
12.
Multiphase flow, especially two-phase gas-liquid flow, is of great importance for a variety of applications and industrial processes, for example in the nuclear, chemical, or oil and gas industries. In this contribution, we present simulation results for gas-liquid slug flow in large horizontal pipes. Six test cases with different oil, water, and gas flow rates are considered, which cover a wide range of different slug flows. The numerical predictions are validated by comparison with experimental data obtained from video observations. The relative error of the mean liquid level between experiment and simulation is less than 12.3% for all but one test cases. Furthermore, a frequency analysis is performed. The single-sided amplitude spectrum as well as the smoothed power spectral density are calculated. For both, experimental and simulation data, one observes an increase of the dominant frequencies if the ratio of liquid and gas superficial velocity is increased.  相似文献   

13.
Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.  相似文献   

14.
The number of slug units that traverses a particular point at a given time within a defined pipe cross-section is known as slug frequency. The behaviour of this critical parameter for two-phase flow in high viscosity oils is significantly different from those of conventional oils (of less than 1 Pa s). In this experimental investigation, new data on slugging frequency in high viscosity oil-gas flow are reported. Scaled experiments were carried out using a mixture of air and mineral oil in a 17 m long horizontal pipe of 0.0762 m ID. A high-speed Gamma Densitometer of frequency of 250 Hz was used for data acquisition over a time interval of 30 s. For the range of flow conditions investigated, increase in oil viscosity was observed to strongly influence the slug frequency. Comparison of the present data with prediction models available in the literature revealed discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for horizontal flow. The proposed correlation will improve the prediction of slug frequency in high viscosity oils.  相似文献   

15.
The underbalanced drilling technique, which is also known as managed-pressure drilling, is playing an important role in oil and gas sector, as it reduces common conventional drilling problems such as minimal drilling rates and formation damage, differential sticking and lost circulation. Flow regime monitoring is one of the key topics in annular multiphase flow research, particularly for underbalanced drilling technique. Prediction of the prevailing flow regime in an annulus is of particular importance in the design and installation of underbalanced drilling facilities. Especially, for establishing a suitable pressure-drop model based on the characteristics of the active flow regime. The methods of flow regime prediction (or visualisation) in an annulus that are currently in use are very limited, this is evidently due to poor accuracy or they are simply not applicable to underbalanced drilling operation in practice. Therefore, this paper presents a monitoring method, in which Electrical Resistance Tomography (ERT) is used to rapidly image the prevailing flow regime in an annulus with a metallic inner pipe. Experiments were carried out using an air–water flow loop with a test section 50 mm diameter flow pipe. The two-phase air–water flow regimes are visualised in the upward vertical annulus with a radius ratio (r/R) 0.4. This paper highlights the visualisation results of only three flow regimes, namely bubble flow, transitional bubble-slug flow and slug flow. The flow regimes are visualised through axial images stacked from 50 mm diameter-pixels of 2D tomograms reconstructed with the Conjugate Gradient Method (SCG). Gas volume fraction profiles within the annular flow channel are also illustrated. The profiles are extracted using the Modified Sensitivity coefficient Back-Projection (MSBP) method with a sensitivity matrix generated from a realstic phantom in the finite element method software. The results are compared with visual observations (e.g. photographs) of the active flow regime at the time of ERT measurements.  相似文献   

16.
Multiphase flows play a vital role in many industrial and naturally occurring processes. Recent trend of miniaturization in mini/micro fluid reactors, compact heat exchangers and micro thrusters requires a thorough knowledge on multiphase flow phenomena in mini/micro channels. The present work is focused on the effect irradiation behavior of infrared rays (IR) during gas liquid two phase flow consisting of thin liquid films inside a mini channel. The influence of size and shape of the slug regime and liquid film thickness on IR rays is analyzed with COMSOL Multi physics package. Experiments are carried out in a 2.5 mm diameter borosilicate glass tube with wall thickness of 0.3 mm. The refraction and transmittance behavior of IR rays on slug and bubbly flow is studied by analyzing the Current-time output of an IR photodiode kept at different angles with the test section. The results are found to be in good agreement with experimental image processing technique and COMSOL results. The results obtained will be useful for designing of IR sensor arrays sensitive to multiphase flows. It can also be used for measurement of liquid film thickness with proper calibration.  相似文献   

17.
The alternating appearance of elongated bubbles and liquid slugs of slug flow in the pipe causes severe pressure fluctuation. As a result, measuring the flow rate of the slug flow with the throttling unit based differential pressure method is difficult. This paper investigates a new swirler-based flow measurement method in slug flow. The swirler converts the slug flow into a swirling annular flow, and the differential pressure method is used to measure the flow rate. The influences of gas and liquid flow rates on the differential pressure ΔPX across the swirler as well as its downstream axial differential pressure ΔPZ are investigated. ΔPX0.5 increases linearly as the liquid mass flow rate increases, and the slope of the curve increases as the gas mass flow rate increases. The influence of gas mass flow rate on ΔPX0.5 is comparable to that of liquid mass flow rate on ΔPX0.5. ΔPZ0.5 increases linearly with increasing gas/liquid mass flow rate, and the slope of the curve of ΔPZ0.5 with ml differs slightly from the slope of the curve in single-phase water conditions. Based on the research presented above, new empirical correlations of mass flow rate based on ΔPX and ΔPZ are established respectively. The superficial liquid velocity ranges from 0.6 to 2 m per second, while the superficial gas velocity ranges from 2 to 6 m per second. If the gas mass flow rate and ΔPX are known, the relative error of liquid mass flow is less than 3%. The relative error of the gas mass flow rate is less than 10% if the liquid mass flow rate and ΔPX are given. The calculation accuracy of the flow measurement model using ΔPX is better than the calculation accuracy of the flow measurement model using ΔPZ.  相似文献   

18.
A new technique was developed for measuring the profile and mean velocity of elongated bubbles in horizontal air–water slug flows. It is based on the capacitance between two thin electrodes mounted on the external surface of a dielectric pipe, and has advantages in relation to the traditional parallel wire technique, since it is not intrusive, the presence of impurities in the liquid phase has no influence on the probe response, and it is applicable to very low electrical conductivity liquids, such as oils and deionized water. Tests were performed in an experimental facility with a 5 m long, 34 mm internal diameter Plexiglas pipeline. The elongated bubble mean velocity was determined by using a cross correlation technique applied to the signals coming from two identical capacitance probes, mounted 50 mm distant from each other. The results were compared with an empirical correlation from the literature. Discordance was observed only for flows near the flow pattern transition regions in the flow pattern map.  相似文献   

19.
The slug flow is a common occurrence in gas–liquid piping flows. Usually it is an undesirable flow regime since the existence of long lumps of liquid slug moving at high speed is unfavorable to gas–liquid transportation, so that considerable effort has been devoted to study its hydrodynamic characteristics. In this work, a capacitive probe was used for dynamic measurements in the horizontal air–water slug flows, for several flow rates. The acquired signals were representative of the effective liquid layer thickness near every cross sectional area of the flow, instead of merely the holdup or void fraction in a finite volume of the flow. This was possible because probe had a thin sensing electrode that minimizes the axial length effect on the measurements. Tests were performed in a 34 mm i.d. acrylic pipe, 5 m long; in which slug flows as well as stratified-smooth and stratified-wavy flows were generated. Signal analysis techniques were applied for flow regime identification and toward characterization of these two-phase flows: Power Spectrum Density (PSD) from Fourier Transform and Probability Density Function (PDF) from Statistical Analysis. Therefore, PSD and PDF graphs were taken as signatures of each flow under test and a correlation was calculated for each PSD and PDF set of data, which showed to be a robust parameter for correct flow regime identification.  相似文献   

20.
In order to investigate the characteristics of an electromagnetic flowmeter in two-phase flow, an alternating-current electromagnetic flowmeter was designed and manufactured. The signals and noise from the flowmeter under various flow conditions were obtained, and analyzed in comparison with the flow patterns observed with a high-speed charge-coupled device camera.

An experiment with void simulators, in which a rod-shaped non-conducting material was used, was carried out to investigate the effect of bubble position and void fraction on the flowmeter. Two-phase flow experiments, encompassing bubbly to slug flow regimes, were conducted with a water–air mixture.

The simple relation ΔUTPUSP/(1−), relating the flowmeter signal between single-phase flow and two-phase flow, was verified with measurements of the potential difference and the void fraction for a bubbly flow regime. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement increased slightly with increasing void fraction and superficial liquid velocity jf.

Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of the slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号