首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A robust discrete terminal sliding mode repetitive controller is proposed for a class of nonlinear positioning systems with parameter uncertainties and nonlinear friction. The terminal sliding mode control (TSMC) part is designed to improve the transient characteristics of the system, as well as the robustness against parameter uncertainties, nonperiodic nonlinearities, and disturbances. The repetitive control (RC) part is then integrated to eliminate the effects of the periodic uncertainties present in the system. Moreover, a pure phase lead compensator is incorporated into the RC to improve the tracking at high frequencies. A robust stability analysis and an analysis of the finite time convergence properties of the proposed controller are also provided in this paper. Simulation testing and an experimental validation using a linear actuator system with nonlinear friction and parameter uncertainties are conducted to verify the effectiveness of the proposed controller.  相似文献   

2.
This paper focuses on the design of nonlinear robust controller and disturbance observer for the longitudinal dynamics of a hypersonic vehicle (HSV) in the presence of parameter uncertainties and external disturbances. First, by combining terminal sliding mode control (TSMC) and second-order sliding mode control (SOSMC) approach, the secondorder terminal sliding control (2TSMC) is proposed for the velocity and altitude tracking control of the HSV. The 2TSMC possesses the merits of both TSMC and SOSMC, which can provide fast convergence, continuous control law and hightracking precision. Then, in order to increase the robustness of the control system and improve the control performance, the sliding mode disturbance observer (SMDO) is presented. The closed-loop stability is analyzed using the Lyapunov technique. Finally, simulation results illustrate the effectiveness of the proposed method, as well as the improved overall performance over the conventional sliding mode control (SMC).  相似文献   

3.
为了克服传统永磁同步电机(Permanent magnet synchronous motor,PMSM)的滑模控制增益大容易产生抖振的问题,提出基于模糊观测器的PMSM积分滑模控制策略。采用新型趋近律设计积分滑模控制器取代传统的滑模控制器,提高系统的动态响应性能。结合模糊控制与自适应控制的特点,设计模糊扰动观测器,能够迅速有效地观测系统内部参数变化和外部扰动,并对积分滑模速度控制器进行前馈补偿,削弱系统抖振的同时提高了系统的鲁棒性。通过李雅普诺夫理论证明了该控制系统的稳定性。仿真及实验结果验证了该方法具有较强的鲁棒性,可以实现良好的跟踪效果并且无抖动。  相似文献   

4.
This paper presents a sliding mode control scheme for tracking control of nonlinear singularly perturbed systems in the presence of model errors and external disturbances. A dual-loop feedback control is developed to provide accurate tracking capability and sufficient robustness to system uncertainties. A sliding mode controller is proposed in the outer-loop feedback design such that the plant states are stabilised for given reference trajectories, while an additional robust controller is designed in the inner loop to increase the adaptability to uncertainties, and reduce the effect of unmodelled high-frequency dynamics on plant dynamics. An appealing feature of the control scheme is the attenuation of chattering. The effectiveness and merits of the new control scheme developed are shown via a verification example of velocity control of a quad-rotor.  相似文献   

5.
利用一种非线性干扰观测器观测减摇鳍系统的不确定性和随机海浪干扰,通过选择设计参数使观测误差指数收敛.针对引入非线性干扰观测器后的系统采用滑模反演法设计控制器,控制律的设计保证了闭环系统的稳定性.仿真结果表明,在不同浪向角和航速的各种海况下采用该控制策略,系统均能取得较好的减摇效果,同时能很好地克服对象的不确定性和随机海浪干扰,鲁棒性较强.  相似文献   

6.
In this work, a robust control scheme for variable speed wind turbine system that incorporates a doubly feed induction generator is described. The sliding mode controller is designed in order to track the optimum wind turbine speed value that produces the maximum power extraction for different wind speed values. A robust sliding mode observer for the aerodynamic torque is also proposed in order to avoid the wind speed sensors in the control scheme. The controller uses the estimated aerodynamic torque in order to calculate the reference value for the wind turbine speed. Another sliding mode control is also proposed in order to maintain the dc‐link voltage constant regardless of the direction of the rotor power flow. The stability analysis of the proposed controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally, the simulation results show that the proposed control scheme provides a high‐performance turbine speed control, in order to obtain the maximum wind power generation, and a high‐performance dc‐link regulation in the presence of system uncertainties.  相似文献   

7.
孙昊  李世华 《控制理论与应用》2018,35(11):1568-1576
油量执行器是电控分配泵的核心部件之一,其直接控制着柴油发动机的燃油喷射量.模型非线性与外部扰动是油量执行器系统中不可避免的影响因素,前期的许多研究忽略了这些非线性,使得闭环系统性能并不理想.本文考虑了旋转电磁铁和复位弹簧等非线性特性的建模,得到了油量执行器系统的数学模型.进而,在基于模型对系统非线性进行抵消之后引入扩张状态观测器对系统外部干扰和不确定性进行估计,设计了基于扩张状态观测器的滑模控制律.该控制律在保证鲁棒性的同时,可以使得切换增益幅值更小,有利于减小滑模控制的抖振问题.最后,通过MATLAB/Simulink仿真和dSPACE平台实验验证了所提方法的可行性和有效性.  相似文献   

8.
This paper investigates a fixed-time convergence issue using the sliding mode observer-based controller for a class of uncertain nonlinear double integrator systems. This observer-based controller is designed assuming that only the first state measurement is available and there is no information about external disturbances and modeling uncertainties. A new form of sliding mode observer in combination with a sliding mode controller is designed to estimate unmeasured state and unknown disturbances and uncertainties as well as provide the estimated data in the control law. A novel form of sliding surfaces for the robust observer-based controller is proposed for which fixed-time convergence is guaranteed to achieve trajectory tracking. In the proposed fixed-time scheme, the bound on the settling time is user-defined using design parameters regardless of the system's initial conditions. The control law and observer law are designed such that the chattering issue is alleviated in the control signal. The stability analysis of the closed-loop system using the observer-based controller is established via the Lyapunov theory. The validity of the controller design is tested by applying and simulating an example of a robot manipulator in Simulink/MATLAB. The superiority of the proposed method is demonstrated by comparing it with two other methods from the relevant literature.  相似文献   

9.
This paper develops an adaptive super-twisting global nonlinear sliding mode control technique for n-link rigid robotic manipulators. A novel control law is designed to guarantee elimination of the reaching phase and existence of the sliding mode around the surface right from the initial time. Furthermore, the adaptive tuning law eliminates requirement of the knowledge about the upper bounds of external disturbances. By using the proposed method, a robust controller is designed so that the tracking error of rigid manipulator is convergent to the global nonlinear sliding surface in a finite time, and strong robustness with respect to large uncertainties and disturbances is guaranteed. Illustrative simulations on a two-link elbow robot manipulator and a three degree of freedom rigid manipulator are presented to show the robustness and effectiveness of the suggested design compared to other method. Moreover, a simulation as well as experimental study of a rotary inverted pendulum system demonstrates the applicability of the proposed method.  相似文献   

10.
本文针对直流降压变换器的负载电阻扰动和输入电压变化等系统不确定因素对输出电压的影响,提出了基于降阶扩张状态观测器的滑模控制方法(SMC+RESO).首先设计降阶扩张状态观测器对系统状态,负载电阻扰动和输入电压变化进行估计,然后基于估计值利用滑模控制技术设计控制器,实现对直流降压变换器系统给定电压跟踪的快速性和准确性.值得注意的是,不同于文[1]所提出的基于扩张状态观测器的滑模控制方法(SMC+ESO),本文所提出的方法采用降阶扩张状态观测器,实现简单,且无需电流传感器,减小了实际应用的成本.利用Lyapunov稳定性定理从理论上证明了所设计的控制器可以保证闭环系统的稳定性.仿真和实验结果表明,与已有的基于扩张状态观测器的滑模控制方法相比,所提出的控制方法更好地改善了系统的跟踪性能和对干扰和不确定性的鲁棒性能,且减少了成本,但是牺牲了系统稳态性能.  相似文献   

11.
The tracking control problem of hypersonic vehicles is studied and analyzed in this paper using terminal sliding mode control method (TSMC) and non-homogeneous disturbance observer(NHDO) considering parametric uncertainty and external disturbances. Non-singular terminal sliding mode controller is provided based on NHDO. The key idea is that the NHDO is adopted to estimate the aerodynamic uncertainties and external disturbances simultaneously, which can enhance the robustness of the system and lower the gain of the switch controller. Rigorous stability analysis for the closed-loop system is given via Lyapunov stability theory, which proves that the system states are always bounded even during the estimation process when the estimation error is not zero. The sliding manifold can be reached in finite time and the tracking errors can converge to zero asymptotically. Numerical simulations are conducted with the longitudinal nonlinear dynamic model of hypersonic vehicles to verify the effectiveness and robustness of the designed controller.  相似文献   

12.
吴立刚  王常虹  曾庆双 《控制与决策》2005,20(10):1091-1096
针对一类状态不可测的非线性不确定中立型时滞系统,基于滑模控制理论,采用线性矩阵不等式的处理方法,提出了滑动模态鲁棒渐近稳定时滞相关的充分条件,设计了一类滑模观测器,同时给出了该观测器存在的充分条件;然后应用滑模控制的趋近率方法和基于观测器所得到的系统估计状态,综合了一类滑模控制器,该控制器同时保证了估计状态下滑模面和估计误差状态下滑模面的渐近可达性;最后通过数值实例证明了该控制方案的可行性.  相似文献   

13.
A robust fuzzy output sliding control for nonlinear robotic arms is proposed in this paper. The proposed method not only retains the advantages of the conventional sliding mode control such as robustness against parameter variations and external disturbances, but also uses measurable output signals to define the sliding surface function. A fuzzy controller is developed to modify the control law to avoid state measurement. Control system stability is proved by using the Lyapunov stability theorem. The system robustness is guaranteed. Simulations results demonstrate the validity and effectiveness of the proposed method for uncertain nonlinear robotic arms.  相似文献   

14.
非线性不确定系统的鲁棒滑模观测器设计   总被引:1,自引:0,他引:1       下载免费PDF全文
对非线性不确定性系统,提出一种鲁棒滑模观测器.所提出的鲁棒滑模观测器通过滑模与相应的控制策略来实现,设计参数的选取不需要求解大量方程,同时能保证对系统的非线性不确定项具有鲁棒性.通过设计滑模,可以调整观测器跟踪系统状态的收敛速度,使状态估计达到预期的指标.仿真结果验证了提出方法的有效性.  相似文献   

15.
Load-following control of the modular high-temperature gas-cooled reactor (MHTGR) system is one of the essential control problems in practical applications. In this paper, a fractional-order sliding mode control strategy via a disturbance observer (FOSMCS-DO) is presented for load following of the MHTGR system with model uncertainties and external disturbances. First of all, the mathematical model of the MHTGR system is constructed by taking neutronics and thermodynamics as well as disturbances into account. Then, based on the MHTGR model, a DO is designed to estimate the lumped disturbances that are composed of model uncertainties, external disturbances, and unmeasured states. Meanwhile, by adopting the Lyapunov stability theory, a FOSMCS is developed to guarantee all the signals of the closed-loop load-following control system tend to be stable, where in the control framework, the adverse effects of the lumped disturbances are alleviated by means of the feedforward compensation and the DO. This implies that the proposed overall control strategy possesses strong robustness against model uncertainties and external disturbances. Finally, comparative simulation results with some existing control approaches are provided to illustrate the superiority of the proposed control strategy.  相似文献   

16.
针对固定翼UCAV(Unmanned Combat Aerial Vehicle)系统中存在的不确定性和外部扰动,设计了一种基于扩张状态观测器的自适应超扭曲滑模控制器用来抑制系统扰动,从而提高对于UCAV的控制性能。建立固定翼UCAV的六自由度非线性模型,针对姿态控制和速度控制分别设计扩张状态观测器对模型中难以精确测量的状态量和外部扰动进行估计,依据奇异摄动原理分别对姿态和速度设计自适应超扭曲滑模控制器,实现对UCAV的姿态和速度的跟踪控制。采用某型固定翼UCAV非线性模型对所设计的控制器进行仿真验证,并且与传统的自抗扰滑模控制方法进行了对比,仿真结果表明,基于扩张状态观测器的自适应超扭曲滑模控制器具有更小的超调量和稳态误差。  相似文献   

17.
This paper investigates the load frequency control (LFC) for wind power systems with modeling uncertainties and variant loads. Since the system state is difficult to be accurately measured due to perturbation of nonlinear load, an observer is designed for reconstructing a substitution system state. Afterwards, an integral sliding surface is designed and a sliding mode LFC (SMLFC) strategy is proposed for reducing frequency deviations of the overall power system. Remarkably, it has been pointed out that a larger convergence rate of the observer error system has positive influences on the SMLFC performances, while the larger observer gain deteriorates the dynamic behavior. For seeking an acceptable balance so as to determine the optimal controller parameters, a collaborative design algorithm is proposed. The proposed method not only guarantees the asymptotical stability of overall power systems but also capable of improving the system robustness. Numerical examples are provided to demonstrate the effectiveness of the proposed methods.  相似文献   

18.
针对具有匹配与非匹配不确定的非线性系统,设计基于干扰观测器和多幂次趋近律的滑模控制策略.首先,通过干扰观测器估计系统的不确定,实现估计误差在有限时间内收敛;其次,基于积分型滑模面,并结合多幂次趋近律,设计了连续滑模控制律,避免了传统滑模的抖振问题.与基于单幂次和双幂次趋近律的滑模控制策略相比,所设计的基于多幂次趋近律的控制策略,提高了系统的收敛速度.最后,通过数值仿真和永磁同步电机控制仿真验证了所设计的控制策略的有效性.  相似文献   

19.
The robust trajectory tracking problem for an eye-in-hand system is addressed in this paper. A novel visual feedback control model is proposed. It considers not only the uncertainties and disturbances in the robot model, but also the unknown camera parameters. By using sliding mode control, filter method and adaptive technique, the controller is designed such that the robot can track the desired trajectory well by using information provided by camera. Finally, stability and robustness are rigorously proved by using Lyapunov method. Computer simulations are presented to show the effectiveness of the proposed visual feedback controller.  相似文献   

20.
This work focuses on the problem of observer-based robust speed sensorless control of a 3-phase permanent magnet synchronous motor (PMSM). Nonlinear design techniques are employed for designing robust speed controller and observer that are able to withstand the effects of modelling uncertainties and load variations. A new cascaded observer scheme is proposed comprising a continuous sliding mode observer (SMO) and an extended high-gain observer (EHGO). The proposed cascaded observer reduces chattering, exhibits reasonable insensitivity to modelling inaccuracies and is capable of withstanding errors due to the finite boundary layer of continuous SMO. For the robust speed control, an integral sliding mode controller is designed that yields fast and accurate speed tracking performance even in the presence of bounded uncertainties and external disturbances. The complete scheme has been evaluated using simulations and experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号