首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a method for evaluating investments in decentralized renewable power generation under price un certainty. The analysis is applicable for a client with an electricity load and a renewable resource that can be utilized for power generation. The investor has a deferrable opportunity to invest in one local power generating unit, with the objective to maximize the profits from the opportunity. Renewable electricity generation can serve local load when generation and load coincide in time, and surplus power can be exported to the grid. The problem is to find the price intervals and the capacity of the generator at which to invest. Results from a case with wind power generation for an office building suggests it is optimal to wait for higher prices than the net present value break-even price under price uncertainty, and that capacity choice can depend on the current market price and the price volatility. With low price volatility there can be more than one investment price interval for different units with intermediate waiting regions between them. High price volatility increases the value of the investment opportunity, and therefore makes it more attractive to postpone investment until larger units are profitable.  相似文献   

2.
The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010–2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3–0.5 €c/kWh (in real prices), depending on the RES-E penetration level.  相似文献   

3.
The main objective of this study is to determine the optimum size of systems able to fulfil the electrical energy requirements of remote sites located in Hajer Bani (HB) Hameed in the North of Oman, Masirah Island and the Mothorah area in the South of Oman. The methodology applied provides a useful and simple approach for sizing and analysing the hybrid systems using Hybrid Optimization Model for Electric Renewables (HOMER). The aim is to identify a configuration among a set of systems that meet the desired system reliability requirements with the lowest energy cost. The results of the analysis are a list of feasible power supply systems, classified according to their net present cost. Actual hourly load data are taken from these sites and are used in the model, and the meteorological readings are used either from the same site or from a nearby one. A comparison between the costs of electricity generated from renewable energy resources in these locations is done and the payback period for renewable energy components is calculated. Moreover, the effects of the temperature on the photovoltaic cells efficiency and energy cost are considered. The cost of energy was found to be 0.206, 0.361 and 0.327 $/kWh for Masirah Island, Mothorah and HB Hameed, respectively.  相似文献   

4.
The present study was conducted with the objective of evaluating several proposed turbines from 25 kW to 1.65 MW in order to select the appropriate turbine for electricity and hydrogen production in Firuzkuh area using the decision making trial and evaluation (DEMATEL) and data envelopment analysis (DEA) methods. Initially, five important factors in selection of the best wind turbine for wind farm construction were determined using the DEMATEL technique. Then, technical-economic feasibility was performed for each of the eight proposed turbines using the HOMER software, and the performance score for each proposed wind turbine was obtained. The results show that the GE 1.5sl model wind turbine is suitable for wind farm construction. The turbine can generate 5515.325 MW of electricity annually, which is equivalent to $ 1103065. The average annual hydrogen production would be 1014 kg for Firuzkuh by using the GE 1.5sl model turbine.  相似文献   

5.
In a competitive and deregulated power scenario, the utilities try to maintain their real electric power generation in balance with the load demand, which creates a need for the precise real time generation scheduling (GS). In this paper, the GS problem is solved to perform the unit commitment (UC) based on frequency prediction by using artificial neural network (ANN) with the objective to minimize the overall system cost of the state utility. The introduction of availability-based tariff (ABT) signifies the importance of frequency in GS. Under-prediction or over-prediction will result in an unnecessary commitment of generating units or buying power from central generating units at a higher cost. Therefore, an accurate frequency prediction is the first step toward optimal GS. The dependency of frequency on various parameters such as actual generation, load demand, wind power and power deficit has been considered in this paper. The proposed technique provides a reliable solution for the input parameter different from the one presented in the training data. The performance of the frequency predictor model has been evaluated based on the absolute percentage error (APE) and the mean absolute percentage error (MAPE). The proposed predicted frequency sensitive GS model is applied to the system of Indian state of Tamilnadu, which reduces the overall system cost of the state utility by keeping off the dearer units selected based on the predicted frequency.  相似文献   

6.
Results of a techno-economic feasibility evaluation of few micro-hydropower (MHP) projects being planned and implemented for decentralized power supply for remote locations in India are presented. The capital cost of such projects (including cost of power evacuation and distribution system), cost per unit of rated capacity, and relative cost of different sub-systems of MHP projects in the capacity range of 10–100 kW have been analysed. Unit cost of delivered electricity for these MHP projects has been estimated. Measures of financial performance for one of the MHP projects have also been determined. Breakeven values for useful life, plant load factor, and unit cost of electricity to the user have also been estimated for the same project.  相似文献   

7.
The line‐/point‐focus combined scheme for concentrating solar power (CSP) system is proposed. For solar field, the parabolic trough (PT) or linear Fresnel (LF) is used as the line‐focus preheating and evaporation stages while the solar tower is used as the point‐focus superheating and reheating stages. The combined schemes benefit from the high concentration ratio of point‐focus technology and low cost of line‐focus technology. Particularly, the combined scheme guarantees the concentrated solar thermal energy matching the temperature requirement of steam generation process with less exergy loss. Performance and economic assessments have been performed for 50 MWe CSP system with two of the combined schemes, ie, PT (synthetic oil, SO) + Tower (molten salt, MS) and LF (direct steam generation, DSG) + Tower (DSG), as well as existing single schemes being the references, ie, PT (SO), LF (DSG), Tower (MS), and Tower (DSG). The comparative results show that the combined schemes are superior to liner‐focus schemes in efficiency and to point‐focus schemes in capital cost and scalability. Specifically, the PT (SO) + Tower (MS) system suggests the favorable potential in practical application with the highest annual net solar‐to‐electrical energy conversion efficiency of 16.07% and the reasonable levelized cost of electricity (LCOE) of 16.121 US cent/(kW·h). This work provides an alternative guidance for future development of the CSP technology.  相似文献   

8.
Because of the pressing need for maintaining a healthy environment with reasonable costs, China is moving toward the trend for generating electricity from renewable resources. Both solar energy and wind power have received a tremendous attention from private associations, political groups, and electric power companies to generate power on a large scale. A drawback is their unpredictable nature and dependence on weather. Fortunately, the problems can be partially tackled by using the strengths of one source to overcome the weakness of the other. Especially, a large fraction of the solar resource is available at times of peak electrical load. However, the complexity of using two different resources together makes the hybrid solar-wind generation systems more difficult to analyze. Accordingly, this paper first briefly introduces the solar-wind generation system and next develops its critical success criteria. Then, a fuzzy analytic hierarchy process associated with benefits, opportunities, costs and risks, is proposed to help select a suitable solar-wind power generation project.  相似文献   

9.
In this study, the feasibility of producing power and hydrogen from the waste heat of different City Gate Stations (CGSs) is investigated to select the optimal working conditions. A thermodynamic model is developed for a proposed system combined of the CGS station, the Rankin cycle and the extended hydrogen production cycle. Initially, six CGS stations are simulated based on energy, exergy-economic and environmental analysis and then a comparative study is conducted between different stations. The results of numerical modeling show that the Mashhad-old station with 5315 kW and 31.062 ton/year has the highest amount of power and hydrogen production among other stations, respectively. It is also observed that, it is more economic to increase the input gas pressure in order to increase the production rate. In addition, optimal working conditions are determined based on the two important optimization factors of the hydrogen production rate and SUCP (sum unit cost of the product) using genetic algorithm optimization technique. The results of multi-objective optimization indicate that Gonbad, Gorgan and Mashhad-old stations, where the inlet gas mass flow rate is in the range of 8–9 kg/s, are the optimum stations.  相似文献   

10.
In recent years, renewable energy can be seen as one of the important prospect of today's research, as it is likely to enlighten the lives of millions of people by fulfilling demand of electricity in their daily life. The present work focuses on the development of optimal hybrid energy system sizing model based on comparative analysis of particle swarm optimization, genetic algorithm and Homer software for energy index ratio of 1. The model also incorporates renewable fraction, emissions of carbon di oxide from diesel generator, net present cost and cost of energy. The system is developed to supply the demand of 7 un-electrified villages of Dhauladevi block of Almora district in Uttarakhand, India with the help of the available resources of solar, hydro, biomass and biogas energy along with the addition of diesel generator, for meeting out the energy deficit. From the optimization results, minimum cost of energy and maximum renewable fraction are obtained as 5.77 Rs/kWh and 92.6% respectively.  相似文献   

11.
South Korea is experiencing a serious imbalance in electricity supply and demand, which caused a blackout in 2011. The Korean government has planned to perform a rolling blackout to prevent large-scale blackouts when the electricity supply reserve margin reaches less than 1 million kW. This study attempts to estimate the inconvenience cost of household customers from a rolling blackout by using survey data. To this end, we apply a contingent valuation method (CVM) to measure their willingness-to-pay (WTP) in order to avoid a rolling blackout, i.e. the suspension of electricity supply. In this study, we estimate the inconvenience costs stemming from both an unannounced and an announced rolling blackout. As a result, we find that the inconvenience cost of a sudden rolling blackout is estimated at 3900.67 KRW (3.56 USD) per month per household, while that of an announced rolling blackout stands at 3102.95 KRW (2.83 USD). This difference in costs shows that people place value in receiving prior notice of a blackout, and that inconvenience costs of between 166.0 billion KRW (151.6 million USD) and 174.3 billion KRW (159.2 million USD) per year can be reduced nationwide by giving households advance notice of a planned rolling blackout.  相似文献   

12.
Recently, South Korea has become a pioneer in implementing hydrogen fuel cell energy production; however, sustainable development of hydrogen fuel cell as an energy source in South Korea remains limited. Hence, it is necessary to address these challenges that hinder such development. This study aims to identify the barriers to developing hydrogen fuel cell energy in South Korea and classify them. We used the combined qualitative methodology, which includes both expert Delphi surveys and Analytic Hierarchy Process techniques. Five factors were identified, each of which has three sub-factors derived for the Delphi survey. The results show that the most serious barriers are institutional and political factors; in addition, the cost of the unit and infrastructure of the fuel cell are significant barriers.  相似文献   

13.
For large-scale dissemination of solar thermal power plants, in countries identified with huge potential, governments are offering various incentives. In an attempt towards studying the effectiveness of various incentives in reducing the levelised cost of electricity (LCOE) delivered by solar thermal power plants in India, this paper presents simple mathematical frameworks that facilitate the determination of the required level of an incentive so as to ensure that the LCOE is within a pre-specified limit. For example, for a 50?MW solar thermal power plant at Barmer (Rajasthan), LCOE of Rs. 9.75 per kWh can be achieved by providing 6.3% viability gap funding or an interest subsidy of 3% or provision of 32% investment tax credits to the equity investor or provision of production tax credits to the equity investor at the rate of Rs. 0.81 per kWh for first 10 years of operation of a plant.  相似文献   

14.
This paper develops the Hybrid Solar-Wind System Optimization Sizing (HSWSO) model, to optimize the capacity sizes of different components of hybrid solar-wind power generation systems employing a battery bank. The HSWSO model consists of three parts: the model of the hybrid system, the model of Loss of Power Supply Probability (LPSP) and the model of the Levelised Cost of Energy (LCE). The flow chart of the HSWSO model is also illustrated. With the incorporated HSWSO model, the sizing optimization of hybrid solar-wind power generation systems can be achieved technically and economically according to the system reliability requirements. A case study is reported to show the importance of the HSWSO model for sizing the capacities of wind turbines, PV panel and battery banks of a hybrid solar-wind renewable energy system.  相似文献   

15.
A techno-economic evaluation of small wind electric generator (SWEG) projects for providing decentralized power supply in remote locations in India is presented. SWEG projects that have either been implemented or are under implementation have been considered. The capital costs of the SWEG projects and sub-systems have been analysed. Levelised unit cost of electricity (LUCE) has been estimated for 19 select places located in different geographical regions of the country. The LUCE is found to vary in the range of Rs. 4.67–83.02/kWh (US$1 0.10–1.86/kWh) for wind electric generator projects in the capacity range 3.2–50 kW with annual mean wind speed variation in the range 5–10 m/s. Issues relating to their environmental impact(s), barriers to diffusion and institutional mechanism(s) to implement such projects have also been discussed.  相似文献   

16.
Nowadays, the penetration of photovoltaic (PV) solar power generation in distributed generation (DG) systems is growing rapidly. This condition imposes new requirements to the operation and management of the distribution grid, especially when high integration levels are achieved. Under this scenario, the power electronics technology plays a vital role in ensuring an effective grid integration of the PV system, since it is subject to requirements related not only to the variable source itself but also to its effects on the stability and operation of the electric grid. This paper proposes an enhanced interface for the grid connection of solar PV generation systems. The topology employed consists of a three-level cascaded Z-source inverter that allows the flexible, efficient and reliable generation of high quality electric power from the PV plant. A full detailed model is described and its control scheme is designed. The dynamic performance of the designed architecture is verified by computer simulations.  相似文献   

17.
Renewable Energy Communities (RECs) have been introduced by the Renewable Energy European Directive (REDII) in order to allow their members to collectively produce, consume, store and sell renewable energy. With the distributed generation deployment, the electricity injection into power grids has to be limited. Thereby, the RES management has to maximise the local energy self-consumption (SC). The present work deals with Power-to-Gas (PtG) application for blending hydrogen in the local gas grid for maximising the energy-SC, comparing it with traditional electric batteries (PtP). Moreover, this study investigate how SC-based tariffs for RECs can represent an indirect incentive for hydrogen production. To do so, a case study, consisting of 200 dwellings, has been analysed. Four PV configuration have been considered for evaluating different RES excess conditions. PtP and PtG systems have been implemented and compared each other. The hydrogen production cost has been assessed exploiting the renewable electricity incentive scheme.  相似文献   

18.
A spatial financial model using wind data derived from assimilated meteorological condition was developed to investigate the profitability and competitiveness of onshore wind power in the contiguous U.S. It considers not only the resulting estimated capacity factors for hypothetical wind farms but also the geographically differentiated costs of local grid connection. The levelized cost of wind-generated electricity for the contiguous U.S. is evaluated assuming subsidy levels from the Production Tax Credit (PTC) varying from 0 to 4 ¢/kWh under three cost scenarios: a reference case, a high cost case, and a low cost case. The analysis indicates that in the reference scenario, current PTC subsidies of 2.1 ¢/kWh are at a critical level in determining the competitiveness of wind-generated electricity compared to conventional power generation in local power market. Results from this study suggest that the potential for profitable wind power with the current PTC subsidy amounts to more than seven times existing demand for electricity in the entire U.S. Understanding the challenges involved in scaling up wind energy requires further study of the external costs associated with improvement of the backbone transmission network and integration into the power grid of the variable electricity generated from wind.  相似文献   

19.
Zero Emission Coal (ZEC) power generation, via Hydrogen Gasification and Solid Oxide Fuel Cell (SOFC), is a newly developed technology that could meet the future energy demand through the continuous utilization of abundant fossil fuel resources while overcoming potential environmental hurdles, especially greenhouse gas CO2 emission. In this paper, chemical kinetics-based analysis for future ZEC system was conducted using the conceptual design operation conditions. The major finding from this research indicated that under a preferred condition, the major reactions occurred in ZEC system can perform with maintaining the high equilibrium rate of conversion. In the light of higher fractions converted by the hydro-gasification process, the reaction temperature in the gasification vessel should be controlled lower than 1100 K and the pressure a little higher than 60 atm in the practical operation. The temperatures for Reformers A and B should be kept under 1100 K and the pressure in Reformer B should be lower than that in Reformer A, which is almost the same as the SOFC in order to drive the CO2 absorption reaction. The reaction temperature should be kept lower than 1500 K and the pressure higher than 3 atm, preferably higher than 10 atm for higher power generation by the electrochemical process in the fuel cell. These findings will provide necessary reference data for the future designs, guide practical operations, and build a solid foundation for further research on Zero Emission Coal power generation systems.  相似文献   

20.
我国生物质直燃发电区域成本及发展潜力分析   总被引:3,自引:0,他引:3  
明确生物质直燃发电优先发展区域是落实国家生物质能中长期发展规划的重要环节。以25 MW装机规模的秸秆直燃电厂为例,采用优化的发电成本计算方法,对我国生物质直燃发电成本进行分省区域研究。结论表明,我国中部与东北部地区直燃发电成本居中,生物质资源丰富,具有生物质直燃发电规模化发展的潜力;同时技术的成熟与碳排放收费等政策的建立将有助于提高直燃发电的经济性,促进其迅速发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号