首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigate the effects of adding titanium dioxide (TiO2) and samarium doped cerium oxide (SDC) on the properties of yttrium-stabilized zirconia (YSZ) electrolyte. The microstructure, mechanical, and electrochemical properties of the electrolyte are investigated. The performance in CO2 electrolysis is measured by supplying carbon dioxide to Ni-YSZ electrode and nitrogen to LSM electrode. Results show that TiO2 and SDC addition can reduce the sintering temperature and increase grain size. The ionic conductivity is 0.123 S cm−1 at 1000 °C. In addition, the thermal expansion coefficient at 1000 °C is 8.25 × 10−6 K−1. The current density of the cell is 439 mA cm−2 at 1.3 V and 1000 °C in solid oxide electrolysis cell.  相似文献   

2.
In this article, manganese tungstate (MnWO4) microflowers as electrode materials for high performance supercapacitor applications are prepared by a one-pot sonochemical synthesis. The crystalline structure and morphology of MnWO4 microflowers are characterized through X-ray diffraction, field emission scanning electron microscopy. The electrochemical properties of the MnWO4 microflowers are investigated using cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The MnWO4 microflowers as electrode materials possess a maximum specific capacitance of 324 F g−1 at 1 mA cm−2 in the potential window from 0 to +1 V and an excellent cycling stability of 93% after 8000 cycles at a current density of 3 mA cm−2. An asymmetric supercapacitor device is fabricated using the MnWO4 and iron oxide (Fe3O4)/multi-wall carbon nanotube as the positive and negative electrode materials, it can be cycled reversibly at a potential window at 1.8 V. The fabricated ASC device can deliver a high energy density of 34 Wh kg−1 at a power density of 500 W kg−1 with cycling stability of 84% capacitance retained after 3000 cycles. The above results demonstrate that MnWO4 microflowers can be used as promising high capacity electrode materials in neutral electrolyte for high performance supercapacitors.  相似文献   

3.
Fabrication of an electrocatalyst with remarkable electrocatalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for the production of hydrogen energy. In this study, Ni–Co–W alloy urchin-like nanostructures were fabricated by binder-free and cost-effective electrochemical deposition method at different applied current densities and HER and OER electrocatalytic activity was studied. The results of this study showed that the microstructure and morphology are strongly influenced by the electrochemical deposition parameters and the best electrocatalytic properties are obtained at the electrode created at the 20 mA.cm−2applied current density. The optimum electrode requires −66 mV and 264 mV, respectively, for OER and HER reactions for delivering the 10 mA cm−2 current density. The optimum electrode also showed negligible potential change after 10 h electrolysis at 100 mA cm−2, which means remarkable electrocatalytic stability. In addition, when this electrode used as a for full water splitting, it required only 1.58 V to create a current density of 10 mA cm−2. Such excellent electrocatalytic activity and stability can be related to the high electrochemical active surface area, being binder-free, high intrinsic electrocatalytic activity and hydrophilicity. This study introduces a simple and cost-effective method for fabricating of effective electrodes with high electrocatalytic activity.  相似文献   

4.
Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxides is relatively low, and their stability has not been confirmed. In this study, Pr is doped into La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) and the applicability of the resulting fuel electrode to direct CO2 electrolysis is investigated. The polarization resistance of the resulting electrode at 800 °C is decreased by 25%. Distribution function of relaxation times analysis indicates that the observed improvements may be attributed to increased oxygen ion conductivity. A full cell of Pr-doped LSCM-gadolinium-doped ceria (GDC)|scandia-stabilized zirconia|La0.6Sr0.4Co0.2Fe0.8O3-δ-GDC achieves an electrolysis current of 0.5 A cm−2 at 1.36 V and a Faradaic efficiency close to 100%. Short-term (210 h) stability testing of the cell under an electrolysis current of 0.5 A cm−2 at 800 °C with pure CO2 as the feedstock reveals a decrease in applied voltage at a rate of 7 mV kh−1, thereby indicating excellent stability. Thus, given its satisfactory performance and stability, the Pr-doped LSCM electrode may be considered a promising candidate material for direct CO2 electrolysis.  相似文献   

5.
The electrochemical reduction of CO2 to value-added products is one of the useful approaches to reducing the effects of global climate change. Herein, a novel electrocatalyst consisting of platinum nanoparticles on histamine-reduced graphene oxide plates (Pt@His-rGO) supported by a glassy carbon (GC) substrate for the electrochemical conversion of CO2 to methanol has been developed. The nanocomposite was optimized in terms of pH, applied potential, CO2 purging time and platinum loading for the highest current densities and faradaic efficiencies toward methanol production. The best results were obtained in a solution containing KNO3 0.1 mol L−1 at the pH of 2.0, the applied potential of −0.3 V vs Ag/AgCl (KClsat), CO2 purging duration of 30 min and Pt loading of 5.17 × 10−7 mol cm−2. The faradaic efficiency of 37% was obtained for methanol production. The prepared nanocomposite requires a lower applied potential and serves as an intermediate stabilizer through the production of methanol.  相似文献   

6.
A new hybrid catalyst based on Ni foam (NF) and FeSe was prepared by a facial hydrothermal method, in which Se-decorated NF was subsequently electrochemically doped by Fe. Binder-free catalyst containing electrodes were directly tested for the hydrogen and oxygen evolution reaction (HER/OER). The FeSe/NF electrode displayed an OER current density of 100 mA cm−2 at potential of 1.42 V, and a relatively small Tafel slope of 109 mV dec−1 in a 1 M KOH solution. Also, FeSe/NF electrode exhibited reasonable HER overpotential of 200 mV at 10 mAcm−2 current density with Tafel slope of 145 mV dec−1. The XRD and TEM studies revealed that the formation of heterogeneous interfaces of NiSe2 and FeSe2,generated more active sites that can promote better ions and electron transport in the electrode/electrolyte interfaces. Furthermore, HRTEM analysis indicates that FeSe2 rich in Se vacancy defects can be created with suitable M − O and M − H bond for better OER and HER performance, respectively. In a-two electrode alkaline water electrolyzer, current densities of 10 mA cm−2 and 50 mA cm−2 were obtained at cell voltages of 1.52 V and 1.85 V, respectively, using pure FeSe–NF as both the cathode and anode.  相似文献   

7.
Li-air batteries (LABs) operated in ambient air containing moisture and CO2 highly desire the oxygen electrodes to have capability of Li2CO3 and LiOH decomposition and electrochemical stability. Here we report the application of a stable non-carbon based oxygen electrode based on boron carbide supported ruthenium (Ru/B4C) for ambient LABs. LABs using Ru/B4C deliver a discharge capacity of 2689 mA h g−1 and voltage plateaus of 2.7 V and 3.8 V for discharge and charge process, respectively at 0.1 mA cm−2, which are comparable to those for Ru/B4C-based Li–O2 battery (2796 mA h g−1, 2.8 V and 3.7 V, respectively). Under limited capacity of 300 mA h g−1, LAB exhibits 45 stable cycles, close to the 50 cycles for its Li–O2 battery counterpart. The typical product for the first discharge for LAB is the mixture of Li2CO3 and Li2O2 with relative content ratio of 62:38, which cannot be detected after the first charge. The non-carbon based Ru/B4C oxygen electrode provides a promising approach for the stable operation of LABs in ambient air.  相似文献   

8.
The development of cost-effective, highly efficient and robust electrodes for oxygen evolution reaction (OER) is greatly significant for water-electrolysis to produce hydrogen. In this paper, we report a stainless steel fiber felt (SSF) electrode with greatly enhanced OER catalytic performance and durability. The SSF is directly treated by cyclic voltammetry (CV) method in alkaline electrolyte, which is more facile and convenient than the traditional measures. The characterization results of X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy indicate that an ultra-thin layer composed of Fe/Ni/Cr hydroxides/oxides with 3D open nanoporous structure is formed on the surface of SSF after CV treatment. The electrochemical tests show that the prepared SSF electrode displays a very low overpotential of 230 mV at 10 mA cm−2, a small Tafel slope of 44 mV dec−1 and good long-term durability of 550 h in 1 M KOH. The excellent OER performance of SSF electrode is contributed to the formation of hybrid metal hydroxides/oxides on its surface via in situ self-growth by electrochemical induction. Furthermore, the electrode only requires an overpotential of 340 mV at 10 mA cm−2 in 0.5 M Na2CO3/NaHCO3 solution. It is expectable that the modified SSF will be a promising catalysis electrode for water-electrolysis in large-scale commercial production.  相似文献   

9.
Solid oxide electrolysis cell (SOEC) can perform CO2 electrolysis to produce CO feedstock. In this work, we show Sr2Fe1.5+xMo0.5O6-δ with exsolved Fe nanoparticles to enhance the activity to CO2 electrolysis. A single SOEC with a configuration of SF1.5+xM-SDC/LSGM/LSM-SDC shows a current density of 1.16 A cm−2 at 1.8 V, which presents the CO production rate of 6.85 mL min−1 cm−2 and the current efficiency of up to 96.3% at 850 °C. We further demonstrate a stable electrolysis performance without obvious degradation being observed even after a long-time operation of 100 h. The exsolved metal-oxide interfaces function as three phase boundary which transports gas molecules, oxygen ions and electrons and therefore accommodate CO2 splitting in electrochemical process.  相似文献   

10.
Transition metal phosphides are very attractive because of the remarkable performance in energy storage and conversion. Herein, a series of bimetallic phosphides are synthesized through a one-step solid-state reaction. The obtained bimetallic phosphides show outstanding properties as supercapacitor electrode materials. Results show that the incorporation of secondary metal into phosphides tunes composition, electronic structure and then the electrochemical performance. And electrochemical properties are closely associated with the secondary metal content. Notably, the obtained NiCoP shows the best performance with 2011 F g−1 at 1 A g−1. And an asymmetric supercapacitor (ASC) based on NiCoP shows energy density of 47.6 W h kg−1, along with 90.5% of capacitance maintained after 10000 cycles. In addition, the NiCoP also possesses great performance toward hydrogen evolution reaction (HER), which displays the lowest potential of 0.221 V vs. RHE and 0.173 V vs. RHE at 10 mA cm−2 in 0.5 M H2SO4 as well as 1.0 M KOH, respectively. The excellent properties may result from the enhanced electrical conductivity, synergistic effects among metal elements and the increased local electrical dipole. The regulation of electronic structure through introduction of secondary metal atom sheds considerable light on realization and preparation of the bimetallic transition metal compounds as electrode materials.  相似文献   

11.
In this work, a cross-linked sheet structured conducting polymer ploy(3,4-ethylenedioxythiophene) (PEDOT) decorated on Ni foam is synthesized via one-step electrodeposition using the sodium p-toluenesulfonate (STSA) as surfactant and applied for supercapacitor electrode. The surfactants play a vital role in controlling the morphologies of PEDOT leading to the electrochemical performance difference. The optimized PEDOT electrode exhibits the highest capacitance of 711.6 mF cm−2 at 3.0 mA cm−2 in the three-electrode system. An asymmetric device (PEDOT/STSA//AC) is constructed by PEDOT/STSA (the positive electrode), activated carbon (AC) (the negative electrode) as well as 1 M Na2SO4 (the electrolyte). The device has been worked in a high-voltage range of 0–1.5 V, which displays the satisfied energy density of 14.0 Wh·kg−1 at 535.5 W kg−1. Furthermore, the PEDOT/STSA//AC device presents excellent rate capability and long-time cyclic stability.  相似文献   

12.
Electrodeposition provides a simple but effective way to prepare advanced electrode for the application in electrochemical field. In this work, NiMoSe ternary nanospheres were deposited on nickel foam (NiMoSe/NF) by one-step electrodeposition. The morphology, phase and chemical composition of the electrode was characterized by using SEM, TEM, XRD and XPS. The electrode exhibited excellent performance for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). It only required 1.39 V and 81 mV (vs. RHE) to deliver a current density of 10 mA/cm2 for UOR and HER, respectively. The electrolyzer constructed with NiMoSe/NF as both anode and cathode could deliver a current density of 10 mA/cm2 at a driving potential of 1.44 V. The stability test showed that the electrode had good durability as electrode for both UOR and HER. Considering the easiness, simplicity and low cost, the NiMoSe/NF electrode could find wide application in urea electrolysis.  相似文献   

13.
Nickel cathode is transformed to lithiated nickel oxide by oxidation and lithiation during the conditioning process for molten carbonate fuel cells. In the lithiation process, the amount of lithium inserted into nickel oxide depends on the oxygen and CO2 composition and this affects the performance of nickel cathode. In this paper, CO2 interruption technique was applied to investigate the effects of CO2 interruption on the lithiation of nickel oxide. During the CO2 interruption for 24 h in cathode operating at 20 mA/cm2, the carbonate ion in electrolyte was decomposed into oxygen and CO2. With the additional oxygen on cathode surface, Ni2+ is oxidized to Ni3+ with formation of cation vacancy in NiO. The lithium content of cathode increased from 3.0 at.% to 17.4 at.% (over-lithiation) and hence LiNiO2 phase was formed in the cathode. Cathode surface area is increased by a decrease in NiO particle size with the formation of micropores. The morphological change in cathode enhanced its electrochemical performance in the single cell. Cell voltage of the single cell that has been subjected to CO2 interruption at 120 mA/cm2 was enhanced by 300 mV, due primarily to the reduction in the internal resistance from 2.0 to 0.8 Ω cm2 and also in the charge transfer resistance from 3.0 to 1.1 Ω cm2.  相似文献   

14.
Nanocrystalline Ba0·6Sr0·4Co0·8Fe0·2O3 (BSCF-6482) powder is synthesized by combustion synthesis technique. Powder calcined at 1000 °C reveals phase pure cubic perovskite. Transmission electron microscopic (TEM) analysis exhibits soft agglomerates of average size ∼50 nm wherein interplanar spacing for (110) and (221) resembles to the cubic lattice. While DC electrical conductivity of 23 S cm−1@800 °C is observed, interfacial polarization measured by electrochemical impedance spectroscopy is found to be the least @850 °C (0.18 Ω cm2). Cell performance has been compared among BSCF-6482, BSCF-5582 and LSCF-6482 mixed ionic and electronic conducting (MIEC) and conventional electrode (LSM). Higher performance (1.37 A/cm2@1.3 V,800 °C) with high hydrogen generation rate (0.57 Nl/cm2/h) is found during steam electrolysis with cell fabricated using BSCF-6482 having minimal area specific resistance 0.33 Ω cm2. Under similar operating condition, BSCF-5582, LSCF-6482 and LSM exhibit hydrogen generation rate of 0.35, 0.28 and 0.23 Nl/cm2/h respectively. Cell microstructure is clinically correlated with the higher reactivity of BSCF-6482 air electrode in steam electrolysis.  相似文献   

15.
In this work, many kinds of V doped Co(OH)2 electrodes were in situ synthesized on Ni foam by a one-step typical hydrothermal process. It is worth noting that the phase transition composition of the V doped Co(OH)2 material can be modulated by the difference of the amount of the V introduced. Different crystal phase compositions show different water oxidation activities. It is worth noting that the V2–Co(OH)2/NF electrode shows better oxygen evolution performance (Overpotential of 320 mV@50 mA cm−2) compared with Co(OH)2/NF (450 mV@50 mA cm−2), V1–Co(OH)2/NF (340 mV@50 mA cm−2) and V3–Co(OH)2/NF (350 mV@50 mA cm−2) electrodes. The experimental results show that not all doping can improve the electrochemistry performance of electrodes, such as the oxidation of urea. Density functional theory calculation further proves that the doping of the V is favorable to the adsorption of water and inhibits the adsorption of urea. This study provides a new idea for the development of efficient overall water splitting catalysts.  相似文献   

16.
In this feature article, Cu0.31Ni0.69O nanoparticles were assembled on reduced graphene nanosheets (Cu0.31Ni0.69O/rGO) by a simple hydrothermal method. The structural characterizations confirm that the synthesized nanoparticles with an average size around 9 nm are densely and uniformly assembled on the reduced graphene oxide (rGO) nanosheets. The electrochemical measurements demonstrate that the as-synthesized Cu0.31Ni0.69O/rGO catalyst exhibits excellent catalytic performance for oxygen reduction reaction with high cathodic current density (2.08 × 10−4 mA/cm2), positive onset potential (−0.21 V), low H2O2 yielding rate (less than 2.5%) and long-term running stability. The rotating disk and rotating ring-disk electrode measurements proved that the oxygen reduction reaction occurs on Cu0.31Ni0.69O/rGO through a high efficient four-electron pathway. The Cu0.31Ni0.69O/rGO nanoparticles shows great potential to be promising noble metal-free catalyst for cathodes of alkaline fuel cells.  相似文献   

17.
Diethylmethylammonium trifluoromethanesulfonate [Dema][TfO], a protic ionic liquid, was used as an electrolyte for an intermediate temperature water electrolyser. In this study we fabricated polymer electrolyte membrane based on PTFE pore filled membrane impregnated with [Dema][TfO]. The activation energy obtained for an ionic conductivity was 8.12 kJ mol−1. Hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) were studied in the solid-state cell with an in-situ RHE reference electrode, using Pt/C cathode and IrO2 anode respectively. The HER was observed at two different potentials, one at a peak potential of −0.47 V vs RHE with a limiting current density of −9.7 mA/cm2, assigned to reduction of hydronium ion. The second HER was observed at −0.63 V vs. RHE, assigned to the [Dema-H]+ cation reduction. Similarly, two oxidation peaks were assigned to OER one at 1.47 V and the second at 1.72 V vs RHE. The full cell water electrolyser achieved a current density of 70 mA/cm2 at 2.2 V with 50% RH at 100 °C. The stability of [Dema-H]+[TfO]- was studied with in-situ mass spectrometry which showed the loss of DEMA at > −0.8 V vs RHE while [TfO]- anion was stable up to 2.5 V vs RHE.  相似文献   

18.
In this paper, we report the three-dimensional self-supported CoMoO4 nanosheet clusters on the nickel foam (denoted as CoMoO4/NF) by a facile hydrothermal-calcination method for efficient hydrogen generation. As a result, the freestanding CoMoO4 electrode exhibits an efficient electrochemical activity towards hydrogen evolution reaction, showing overpotentials as low as 68 and 178 mV at current densities of 10 and 100 mA cm−2 in the alkaline condition (1 M KOH), respectively, a Tafel slope value of 82 mV per decade. Moreover, the electrode exhibits remarkable electrochemical durability for 1000 cycles. Significantly, the water splitting electrolyzer assembled with CoMoO4/NF || NiFe LDH/NF (the nickel iron layered double hydroxide supported on the nickel foam) system achieved 20 mA cm−2 at 1.63 V, showing the CoMoO4/NF is promising for practical water splitting applications.  相似文献   

19.
Bismuth vanadate has been extensively investigated as a potential visible light photoanode for PEC water splitting. The performance of BiVO4 is restricted by fast charge recombination and slow oxygen evolution reaction kinetic. To address these issues, hierarchical SnO2 (HSN) mesoporous support is developed via a novel sol-electrophoretic approach, and BiVO4 film is decorated with silver nanorods (Ag NRs). The photocurrent density of HSN/BiVO4 photoanode is 3.98 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) and onset potential (Vonset) of 0.5 V vs. RHE. The PEC performance is attributed to the appropriate band alignment between SnO2 and BiVO4, as well as the hierarchical structure of SnO2. Ag-HSN/BiVO4 photoanode shows photocurrent density of 4.30 mA/cm2 at 1.23 V vs. RHE and Vonset of 0.28 V vs. RHE. The enhanced photocurrent and negatively shifted Vonset can be attributed to radiative localized surface plasmon resonance decay and catalytic effect of Ag NRs, respectively.  相似文献   

20.
Finding a suitable replacement for the high potential of anodic water electrolysis (oxygen evolution reaction (OER)) is significant for hydrogen energy storage and conversion. In this work, a simple and scalable method synthesizes a structurally unique Ni3N nanoarray on Ni foam, Ni3N-350/NF, that provides efficient electrocatalysis for the urea oxidation reaction (UOR) that transports 10 mA cm−2 at a low potential of 1.34 V. In addition, Ni3N-350/NF exhibits electro-defense electrocatalytic performance for hydrogen evolution reaction, which provides a low overpotential of 128 mV at 10 mA cm−2. As proof of concept, all-water-urea electrolysis measurement is carried out in 1 M KOH with 0.5 M Urea with Ni3N-350/NF as cathode and anode respectively. Ni3N-350/NF||Ni3N-350/NF electrode can provide 100 mA cm−2 at a voltage of only 1.51 V, 160 mV less than that of water electrolysis, which proves its commercial viability in energy-saving hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号