首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Safe and long cycle life electrode materials for lithium‐ion batteries are significantly important to meet the increasing demands of rechargeable batteries. Niobium pentoxide (Nb2O5) is one of the highly promising candidates for stable electrodes due to its safety and minimal volume expansion. Nevertheless, pulverization and low conductivity of Nb2O5 have remained as inherent challenges for its practical use as viable electrodes. A highly facile method is proposed to improve the overall cycle retention of Nb2O5 microparticles by ammonia (NH3) gas‐driven nitridation. After nitridation, an ultrathin surficial layer (2 nm) is formed on the Nb2O5, acting as a bifunctional nanolayer that allows facile lithium (Li)‐ion transport (10–100 times higher Li diffusivity compared with pristine Nb2O5 microparticles) and further prevents the pulverization of Nb2O5. With the subsequent decoration of silver (Ag) nanoparticles (NPs), the low electric conductivity of nitridated Nb2O5 is also significantly improved. Cycle retention is greatly improved for nitridated Nb2O5 (96.7%) compared with Nb2O5 (64.7%) for 500 cycles. Ag‐decorated, nitridated Nb2O5 microparticles and nitridated Nb2O5 microparticles exhibit ultrastable cycling for 3000 cycles at high current density (3000 mA g?1), which highlights the importance of the surficial nanolayer in improving overall electrochemical performances, in addition to conductive NPs.  相似文献   

2.
Sodium‐ion hybrid supercapacitors (Na‐HSCs) by virtue of synergizing the merits of batteries and supercapacitors have attracted considerable attention for high‐energy and high‐power energy‐storage applications. Orthorhombic Nb2O5 (T‐Nb2O5) has recently been recognized as a promising anode material for Na‐HSCs due to its typical pseudocapacitive feature, but it suffers from intrinsically low electrical conductivity. Reasonably high electrochemical performance of T‐Nb2O5‐based electrodes could merely be gained to date when sufficient carbon content was introduced. In addition, flexible Na‐HSC devices have scarcely been demonstrated by far. Herein, an in situ encapsulation strategy is devised to directly grow ultrathin graphene shells over T‐Nb2O5 nanowires (denoted as Gr‐Nb2O5 composites) by plasma‐enhanced chemical vapor deposition, targeting a highly conductive anode material for Na‐HSCs. The few‐layered graphene capsules with ample topological defects would enable facile electron and Na+ ion transport, guaranteeing rapid pseudocapacitive processes at the Nb2O5/electrolyte interface. The Na‐HSC full‐cell comprising a Gr‐Nb2O5 anode and an activated carbon cathode delivers high energy/power densities (112.9 Wh kg?1/80.1 W kg?1 and 62.2 Wh kg?1/5330 W kg?1), outperforming those of recently reported Na‐HSC counterparts. Proof‐of‐concept Na‐HSC devices with favorable mechanical robustness manifest stable electrochemical performances under different bending conditions and after various bending–release cycles.  相似文献   

3.
Oxidation behavior of Nb–30Si–(10,20)Cr alloys have been evaluated in air from 700 to 1400 °C by heating for 24 h and furnace cooling them. The lower weight gain per unit area has been observed for 20Cr alloy at 1200, 1300, and 1400 °C. Pesting has been observed at lower temperatures (700, 800, 900 °C). Analysis indicates that the powder formation at 900, 100, 1100 °C may be associated with β form of Nb2O5 (base centered monoclinic form). However the m-monoclinic form of Nb2O5 evolves at temperatures above 900 °C while o-orthorhombic Nb2O5 forms at below this temperature. The phases in the alloys have been calculated using the PandatTM software program at different temperatures using calculated Nb–Cr–Si phase diagrams.  相似文献   

4.
Lithium–sulfur batteries (LSBs) have shown great potential for application in high‐density energy storage systems. However, the performance of LSBs is hindered by the shuttle effect and sluggish reaction kinetics of lithium polysulfides (LiPSs). Herein, heterostructual Nb2O5 nanocrystals/reduced graphene oxide (Nb2O5/RGO) composites are introduced into LSBs through separator modification for boosting the electrochemical performance. The Nb2O5/RGO heterostructures are designed as chemical trappers and conversion accelerators of LiPSs. Originating from the strong chemical interactions between Nb2O5 and LiPSs as well as the superior catalytic nature of Nb2O5, the Nb2O5/RGO nanocomposite possesses high trapping efficiency and efficient electrocatalytic activity to long‐chain LiPSs. The effective regulation of LiPSs conversion enables the LSBs enhanced redox kinetics and suppressed shuttle effect. Moreover, the Nb2O5/RGO nanocomposite has abundant sulfophilic sites and defective interfaces, which are beneficial for the nucleation and growth of Li2S, as evidenced by analysis of the cycled separators. As a result, LSBs with the Nb2O5/RGO‐modified separators exhibit excellent rate capability (816 mAh g?1 at 3 A g?1) and cyclic performance (628 mAh g?1 after 500 cycles). Remarkably, high specific capacity and stable cycling performance are demonstrated even at an elevated temperature of 50 °C or with higher sulfur loadings.  相似文献   

5.
Homogeneous ultrasmall T‐Nb2O5 nanocrystallites encapsulated in 1D carbon nanofibers (T‐Nb2O5/CNFs) are prepared through electrospinning followed by subsequent pyrolysis treatment. In a Na half‐cell configuration, the obtained T‐Nb2O5/CNFs with the merits of unique microstructures and inherent pseudocapacitance, deliver a stable capacity of 150 mAh g−1 at 1 A g−1 over 5000 cycles. Even at an ultrahigh charge–discharge rate of 8 A g−1, a high reversible capacity of 97 mAh g−1 is still achieved. By means of kinetic analysis, it is demonstrated that the larger ratio of surface Faradaic reactions of Nb2O5 at high rates is the major factor to achieve excellent rate performance. The prolonged cycle durability and excellent rate performance endows T‐Nb2O5/CNFs with potentials as anode materials for sodium‐ion batteries.  相似文献   

6.
Hybrid Na‐ion capacitors (NICs) are receiving considerable interest because they combine the merits of both batteries and supercapacitors and because of the low‐cost of sodium resources. However, further large‐scale deployment of NICs is impeded by the sluggish diffusion of Na+ in the anode. To achieve rapid redox kinetics, herein the controlled fabrication of mesoporous orthorhombic‐Nb2O5 (T‐Nb2O5)/carbon nanofiber (CNF) networks is demonstrated via in situ SiO2‐etching. The as‐obtained mesoporous T‐Nb2O5 (m‐Nb2O5)/CNF membranes are mechanically flexible without using any additives, binders, or current collectors. The in situ formed mesopores can efficiently increase Na+‐storage performances of the m‐Nb2O5/CNF electrode, such as excellent rate capability (up to 150 C) and outstanding cyclability (94% retention after 10 000 cycles at 100 C). A flexible NIC device based on the m‐Nb2O5/CNF anode and the graphene framework (GF)/mesoporous carbon nanofiber (mCNF) cathode, is further constructed, and delivers an ultrahigh power density of 60 kW kg?1 at 55 Wh kg?1 (based on the total weight of m‐Nb2O5/CNF and GF/mCNF). More importantly, owing to the free‐standing flexible electrode configuration, the m‐Nb2O5/CNF//GF/mCNF NIC exhibits high volumetric energy and power densities (11.2 mWh cm?3, 5.4 W cm?3) based on the full device, which holds great promise in a wide variety of flexible electronics.  相似文献   

7.
In this work, the effects of Nb2O5 addition on the dielectric properties and phase formation of BaTiO3 were investigated. A core–shell structure was formed for Nb-doped BaTiO3 resulted from a low diffusivity of Nb5+ ions into BaTiO3 when grain growth was inhibited. In the case of 0.3–4.8 mol% Nb2O5 additions, two dielectric constant peaks were observed. The Curie dielectric peak was determined by the ferroelectric-paraelectric transition of grain core, whereas the secondary broad peak at lower temperature was due to strong chemical inhomogeneity in Nb-doped BaTiO3 ceramics. The dielectric constant peak at Curie temperature was markedly depressed with the addition of Nb2O5. On the other hand, the secondary dielectric constant peak was enhanced when sintered above 1280 °C for higher Nb2O5 concentrations (≥1.2 mol%). The Curie temperature was shifted to higher temperatures, whereas the transition temperature corresponding to the secondary peak moved to lower temperatures as increasing the amount of Nb2O5 more than 1.2 mol%. The decrease of this lower transition temperature was assumed to be closely related with the secondary phase formation when Nb concentration greater than 1.2 mol%. From XRD analyses, a large amount of secondary phases was observed when Nb2O5 amount exceeded 1.2 mol%. The coefficients of thermal expansion of Nb-doped BaTiO3 were increased with increasing Nb2O5 contents, resulting in large internal stress between cores and shells. Therefore, the shift of Curie temperature to higher temperatures was attributed to internal stress resulting from the formation of a core–shell structure and a large amount of secondary phase grains.  相似文献   

8.
The present study investigated the sintering behaviour of Nb–16Si–25Ti–8Hf–2Cr–2Al alloy powders. The alloy powders were produced using ahydrogenation–dehydrogenation method and featured an irregular morphology. Powders sintered at 1500°C and 1600°C exhibited pores in their microstructures, while powders sintered at 1700°C for 4?h were fully densified and poreless. The cast ingot and powders were composed of three phases: Nbss, Nb5Si3, and Nb3Si. However, the Nb3Si phase was not observed, while HfO2 oxides formed in the sintered compact. The hafnium and oxygen reacted to form an HfO2 oxide during the high-temperature sintering process. From the result of the thermodynamic calculation, Hf oxide formed after sintering because Hf has the highest driving force for oxidation among the elements constituting the alloy.  相似文献   

9.
2D perovskites, due to their unique properties and reduced dimension, are promising candidates for future optoelectronic devices. However, the development of stable and nontoxic 2D wide-bandgap perovskites remains a challenge. 2D all-inorganic perovskite Sr2Nb3O10 (SNO) nanosheets with thicknesses down to 1.8 nm are synthesized by liquid exfoliation, and for the first time, UV photodetectors (PDs) based on individual few-layer SNO sheets are investigated. The SNO sheet-based PDs exhibit excellent UV detecting performance (narrowband responsivity = 1214 A W−1, external quantum efficiency = 5.6 × 105%, detectivity = 1.4 × 1014 Jones @270 nm, 1 V bias), and fast response speed (trise ≈ 0.4 ms, tdecay ≈ 40 ms), outperforming most reported individual 2D sheet-based UV PDs. Furthermore, the carrier transport properties of SNO and the performance of SNO-based phototransistors are successfully controlled by gate voltage. More intriguingly, the photodetecting performance and carrier transport properties of SNO sheets are dependent on their thickness. In addition, flexible and transparent PDs with high mechanical stability are easily fabricated based on SNO nanosheet film. This work sheds light on the development of high-performance optoelectronics based on low-dimensional wide-bandgap perovskites in the future.  相似文献   

10.
Intermetallic aluminides including those phases of the Nb-Al system are of interest for high-temperature structural applications. Through aluminothermic reduction (ATR) of Nb2O5 different alloys of the Nb-Al system can be produced by varying the amount of aluminum (excess aluminum) in the thermit charge. In this work, various Nb-Al alloys were produced by varying Nb2O5 and Al powder blends. The resulting alloys were characterized by chemical analysis (Al, O, and C), X-ray diffraction and scanning electron microscopy. The aluminum content of the alloys increased linearly from 14.5 to 50.4 at% as the excess Al was varied from 10 up to 60% over the stoichiometric amount to reduce the Nb2O5. The carbon content was lower than 300 wt-ppm. The oxygen content decreases with increasing excess Al, reaching 1300 wt-ppm for the alloy produced with 60% excess Al. The inclusion content (Al2O3) decreases significantly as the excess Al is increased. The following metallic phases were identified in the alloys: Nbss (niobium solid solution) and Nb3Al (alloy produced with 10% excess Al); Nb3Al (alloys produced with 15 and 20% excess Al); Nb3Al, Nb2Al, and NbAl3 (alloy produced with 30% excess Al); and Nb2Al and NbAl3 (alloys produced with 40, 50, and 60% excess Al).  相似文献   

11.
Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 (0 ≤ x ≤ 4) ceramics with the substitution of (Fe1/2Nb1/2) for Ti were investigated. The modified Ba3Ti4Nb4O21 dielectric ceramics prepared via the solid state reaction route exhibited single hexagonal structure. The dielectric constant and the quality factor of Ba3Ti4−x (Fe1/2Nb1/2) x Nb4O21 (0 ≤ x ≤ 4) ceramics decreased with an increase of x. Improved temperature coefficient of the resonant frequency of samples was obtained by the substitution of (Fe1/2Nb1/2) for Ti. Optimal microwave dielectric properties of ε = 50, Q × f = 5200 GHz, and τ f = 10 ppm/°C in Ba3Ti2(Fe1/2Nb1/2)2Nb4O21 were obtained, which indicated its potential for microwave application.  相似文献   

12.
Second harmonic generation (SHG) of 2D crystals has been of great interest due to its advantages of phase-matching and easy integration into nanophotonic devices. However, the polarization-dependence character of the SHG signal makes it highly troublesome but necessary to match the laser polarization orientation relative to the crystal, thus achieving the maximum polarized SHG intensity. Here, it is demonstrated a polarization-independent SHG, for the first time, in the van der Waals Nb3SeI7 crystals with a breathing Kagome lattice. The Nb3 triangular clusters and Janus-structure of each Nb3SeI7 layer are confirmed by the STEM. Nb3SeI7 flake shows a strong SHG response due to its noncentrosymmetric crystal structure. More interestingly, the SHG signals of Nb3SeI7 are independent of the polarization of the excitation light owing to the in-plane isotropic arrangement of nonlinear active units. This work provides the first layered nonlinear optical crystal with the polarization-independent SHG effect, providing new possibilities for nonlinear optics.  相似文献   

13.
Pb-containing relaxor ferroelectric ceramics are prepared by mechanochemical ceramic processing. Mechanochemical reactions in binary and ternary mixtures of the PbO-ZnO-Nb2O5 system are studied by x-ray diffraction. Disordered compounds with the columbite, changbaiite, and pyrochlore structures are prepared. The perovskite and pyrochlore phases in 0.9Pb(Zn1/3Nb2/3)O3 + 0.1ABO3 morphotropic phase boundary materials are shown to be in mechanochemical equilibrium. Among the ABO3 additives studied, BaMnO3 is the most effective for stabilizing the perovskite structure. The mechanochemical synthesis path has a strong effect on the phase composition of the resulting material. Conventional synthesis through a columbite phase leads to the predominant formation of a pyrochlore phase. Firing conditions also have a profound effect on the phase composition of the ceramics, but the disordered perovskite phase retains cubic symmetry.  相似文献   

14.
Ti–Nb–O binary oxide materials represent a family of promising intercalating anode materials for lithium‐ion batteries. In additional to their excellent capacities (388–402 mAh g–1), these materials show excellent safety characteristics, such as an operating potential above the lithium plating voltage and minimal volume change. Herein, this study reports a new member in the Ti–Nb–O family, Ti2Nb14O39, as an advanced anode material. Ti2Nb14O39 porous spheres (Ti2Nb14O39‐S) exhibit a defective shear ReO3 crystal structure with a large unit cell volume and a large amount of cation vacancies (0.85% vs all cation sites). These morphological and structural characteristics allow for short electron/Li+‐ion transport length and fast Li+‐ion diffusivity. Consequently, the Ti2Nb14O39‐S material delivers significant pseudocapacitive behavior and excellent electrochemical performances, including high reversible capacity (326 mAh g?1 at 0.1 C), high first‐cycle Coulombic efficiency (87.5%), safe working potential (1.67 V vs Li/Li+), outstanding rate capability (223 mAh g–1 at 40 C) and durable cycling stability (only 0.032% capacity loss per cycle over 200 cycles at 10 C). These impressive results clearly demonstrate that Ti2Nb14O39‐S can be a promising anode material for fast‐charging, high capacity, safe and stable lithium‐ion batteries.  相似文献   

15.
The present work attempts to investigate the sintering characteristics, grain boundary morphology and electric conductivity of Nb2O5 doped TiO2 semiconductor ceramics. X-ray diffraction results showed evidence of a second phase beside the rutile TiO2 when Nb2O5 exceeds 0.7 mol%. SEM images showed that Nb2O5 doping can lowers the sintering temperature of TiO2, although not significantly. Lattice images of the grain boundary morphology obtained by high resolution transmission electron microscopy revealed defects introduced from the doping. Grain boundaries vary from amorphous to a faceted structure. Finally, electrical conductivity measurements showed that the grain boundary resistance is greatly reduced at high temperature.  相似文献   

16.
Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) lead-free piezoelectric ceramics doped with Nb2O5 (0.1, 0.3, 0.5, 0.7, 0.9 wt%) and Li2CO3 (0.6 wt%) were prepared by conventional solid-state reaction method. Influence of Nb2O5 doping amount on the piezoelectric property, dielectric property, phase composition and microstructure of prepared BCTZ lead-free piezoelectric ceramics doped with Li2CO3 were investigated by X-ray diffraction and scanning electron microscopy and other analytical methods. The results showed that the sintered temperature decreased greatly when the BCTZ lead-free piezoelectric ceramics were co-doped with Nb2O5 and Li2CO3; a pure perovskite structure of BCTZ lead-free piezoelectric ceramics co-doped with Nb2O5 and Li2CO3 sintered at 1,020 °C could be also obtained. The grain size decreased when Nb2O5 doping amount increased. The piezoelectric constant (d33), the planar electromechanical coupling factor (kp), the relative dielectric constant (εr) of BCTZ ceramics doped with Li2CO3 increased firstly and then decreased, the dielectric loss (tanδ) decreased firstly and then increased when Nb2O5 doping amount increased, indicating that Nb2O5 was “soft” additive. When Nb2O5 doping amount (z) was 0.7 wt% and Li2CO3 doping amount was 0.6 wt%, the BCTZ ceramics sintered at 1,020 °C possessed the best piezoelectric property and dielectric property, which d33 was 238 pC/N, kp was 29.33 %, εr was 4,691, tanδ was 2.07 %.  相似文献   

17.
Reaction controlled sintering was applied to the fabrication of BaBi2Nb2O9 (BBN) ceramics at lower temperature. A powder mixture of BaCO3 and Nb2O5 was heated at 600 °C in a 1st step calcination to produce a binary precursor of BaNb2O6. The pre-heated powder was then mixed with a fixed amount of Bi2O3, which was subsequently pressed into a disk pellet. After a powder compact of the mixture was subjected to heating at 950 °C for 4 h, a BBN bulk sample with a relative density of 92% was successfully obtained. The low-temperature fabrication of dense BBN ceramics could be attributed to the inhibited formation of an intermediate phase of Ba5 Nb4O15 and the production of submicron powder with an appropriate reactivity during a 1st step calcination.  相似文献   

18.
We have studied conditions for the synthesis of niobium pentoxide and a lithium niobate growth charge doped with dysprosium, which was added to niobium hydroxide obtained through extraction processing of rare-metal-containing raw materials. The phase composition of Nb2O5〈Dy〉 precursors was determined by X-ray diffraction and IR spectroscopy. Using inductively coupled plasma mass spectrometry in combination with a laser ablation sampling system, we examined the Dy dopant profile in Nb2O5 powder samples and the LiNbO3 growth charge. The Nb2O5 precursors and the growth charge synthesized using them were shown to be chemically uniform in composition. The present results are of importance for the growth of defect-free lithium niobate single crystals of optical quality, highly uniform in composition, with a predetermined doping level.  相似文献   

19.
The effects of BaCu(B2O5) (BCB) additions on the sintering temperature and microwave dielectric properties of Ba2Ti3Nb4O18 ceramic have been investigated. The addition of BCB can lower the sintering temperature of Ba2Ti3Nb4O18 ceramic from 1,250 to 900 °C and induce no obvious degradation of the microwave dielectric properties. Typically, the 5 wt% BCB added Ba2Ti3Nb4O18 ceramic sintered at 900 °C for 2 h exhibited good microwave dielectric properties of Q × f = 17,600 GHz, ε r = 38.2 and τ f  = 7 ppm/°C. The dielectric ceramic demonstrated stability against the reaction with the Ag electrode, which suggests that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

20.
Interactions between the conductive phase in thick-film resistor materials (RuO2 and Bi2Ru2O7) and TCR modifiers (CdO and Nb2O5) were studied. Phase equilibria in the RuO2−Bi2O3−CdO, RuO2−Bi2O3−Nb2O5 and RuO2−CdO−Nb2O5 systems were examined. The lines in the systems were established. The existence of a solid solution of composition Bi 2−x Cd x Ru2O 7−x/2 was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号