首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
杨润亚  明永飞  王慧 《食品科学》2010,31(16):78-82
采用正交试验设计研究超声波辅助提取无花果叶中总黄酮的工艺条件,并对无花果叶中总黄酮的抗氧化活性进行测定。结果表明:无花果叶中总黄酮的最佳超声提取工艺为体积分数40% 乙醇溶液、料液比1:60(g/mL)、超声功率400W、超声温度60℃条件下提取50min,其提取量为25.04mg/g,影响无花果叶中总黄酮提取效果的主次因素为:超声温度>超声时间>料液比>乙醇体积分数。无花果叶黄酮提取物具有清除羟自由基、超氧阴离子自由基的作用,其清除效果在一定范围内随着总黄酮质量浓度的增加而增强。  相似文献   

2.
为提高金银花叶中黄酮类化合物的提取率,在乙醇体积分数、提取温度、液料比和超声功率4 个单因素试验的基础上,通过二次通用旋转组合设计试验优化金银花叶黄酮的超声辅助提取工艺条件,并对其体外抗氧化活性进行研究。结果表明,在乙醇体积分数60%、液料比65∶1(mL/g)、提取温度46 ℃、超声功率250 W的条件下金银花叶黄酮提取率最高,可达15.67%,与模型预测值相符。抗氧化实验结果表明,金银花叶黄酮具有较强的抗氧化能力,其清除超氧阴离子自由基的能力与作用时间呈反比,与提取液质量浓度呈正比;清除羟自由基的IC50值为0.11 mg/mL,是对照品的34 倍。  相似文献   

3.
以紫果西番莲叶为对象,研究其多酚提取工艺及抗氧化活性。在单因素实验基础上采用Box-Behnken响应面分析法优化紫果西番莲叶多酚的提取工艺,考察液料比、提取时间、超声功率和超声温度对其多酚提取量的影响,以清除DPPH自由基和·OH能力评价紫果西番莲叶多酚的抗氧化活性。结果表明,最佳提取条件为:液料比36:1 mL/g、提取时间54 min、超声功率350 W和超声温度70℃,此时紫果西番莲叶中多酚提取量为(13.19±0.17) mg/g。抗氧化活性结果表明,紫果西番莲叶多酚具有较好的抗氧化活性,其清除DPPH自由基和·OH的半抑制浓度(IC50)分别为0.058和0.144 mg/mL。  相似文献   

4.
目的:研究超声辅助提取黑老虎果皮多酚的最佳工艺及其体外抗氧化活性.方法:通过单因素分析(料液比、乙醇体积分数、超声时间、超声功率)及正交试验优化提取工艺;测定最优提取条件下提取的黑老虎果皮多酚对DPPH和ABTS+自由基的清除力.结果:超声辅助提取黑老虎果皮多酚的最佳工艺条件为20%乙醇、料液比1:60g/mL、超声提...  相似文献   

5.
研究了酶法-超声波辅助提取香椿叶总黄酮的工艺条件及其抗氧化活性。通过Plackett-Burman筛选出影响最显著的三个因素:纤维素酶用量、p H和超声提取功率,进行三因素三水平的响应面实验,优化了香椿叶总黄酮的酶法-超声波提取工艺条件,以香椿叶总黄酮提取液清除羟自由基和DPPH自由基来评价其抗氧化活性。得到的最佳工艺参数为:酶解温度和超声提取温度均为60℃,料液比1∶30 g/m L,乙醇体积分数70%,超声提取时间40 min,纤维素酶用量8 mg/g,p H=5.6,超声提取功率为220 W,此条件下香椿叶总黄酮得率达到33.166 mg/g。抗氧化结果表明香椿叶总黄酮具有一定的抗氧化能力,香椿叶总黄酮提取液对羟自由基和DPPH自由基清除率的IC50分别为22.85、53.74μg/m L。  相似文献   

6.
以艾叶为对象,研究艾叶多酚提取工艺及抗氧化活性。在单因素试验基础上采用Box-Behnken响应面分析法优化艾叶多酚的提取工艺,考察液料比、提取时间、超声功率和提取温度对多酚提取量的影响,以清除DPPH自由基和·OH能力评价艾叶多酚的抗氧化活性。结果表明,最佳提取条件为:液料比26 mL/g、提取时间60 min、超声功率300 W和提取温度74 ℃,此时艾叶中多酚的含量为54.21 mg/g。抗氧化活性评价结果表明艾叶多酚具有较好的抗氧化活性,其清除DPPH自由基和·OH的半抑制浓度(IC_(50))分别为0.044 mg/mL和0.081 mg/mL。  相似文献   

7.
研究了罗汉松总黄酮提取工艺及其抗氧化活性。在单因素试验基础上,采用响应面法对乙醇浓度、液料比、超声功率、提取时间4个因素进行优化,得到罗汉松总黄酮的最佳提取工艺:乙醇浓度73.5%、液料比49∶1(mL/g)、超声功率500 W、提取时间40min,在该条件下罗汉松总黄酮的提取率达到6.271%。体外抗氧化性研究表明,罗汉松总黄酮对DPPH自由基、羟自由基、超氧阴离子的IC50分别为0.369、0.487、0.520 mg/mL,其对3种自由基的清除能力虽然弱于维生素C,但仍表现出较好的抗氧化活性。  相似文献   

8.
通过单因素试验考察超声功率、料液比、乙醇体积分数、提取时间对芝麻素得率的影响,建立提取条件与芝麻素得率之间的回归方程,采用Design Expert软件优化得到最佳提取工艺条件。超声辅助提取黑芝麻粕中芝麻素的最佳条件为提取时间1.9 h、料液比1∶25 g/mL、乙醇体积分数83%、超声功率400 W,在此条件下芝麻素得率为66.70 mg/100 g,与预测值基本符合。抗氧化活性试验表明,芝麻素对DPPH自由基和ABTS+自由基具有较强的清除作用。研究结果可为黑芝麻粕的功能性成分提取及下游产业研发提供参考。  相似文献   

9.
研究荞麦叶大百合总黄酮的乙醇提取工艺及其抗氧化活性,在单因素试验基础上,以乙醇浓度、提取温度、料液比、提取时间为自变量,总黄酮提取率为因变量,运用正交试验优化荞麦叶大百合中总黄酮提取工艺。同时,测定荞麦叶大百合总黄酮对DPPH自由基的清除活性。结果表明:荞麦叶大百合中总黄酮提取的最佳工艺条件为乙醇浓度为70%,提取温度60℃,料液比为1∶10(g/mL)和提取时间为30 min。此条件下,总黄酮提取率达到10.90 mg/g,重复性试验结果表明,此方法稳定可靠,提取率高,适于荞麦叶大百合中总黄酮的提取。荞麦叶大百合总黄酮和V_C对DPPH自由基的半数清除率EC_(50)分别是4.439、18.746μg/mL,由抗氧化试验结果看出,荞麦叶大百合中总黄酮对于DPPH自由基的清除能力优于抗氧化剂V_C,具有较强的抗氧化活性。  相似文献   

10.
为研究石榴皮安石榴苷的超声提取工艺及体外抗氧化活性,在单因素试验的基础上,采用响应面方法(response surface methodology,RSM),研究乙醇浓度、提取时间、料液比、超声功率及提取次数对提取石榴皮中安石榴苷含量的影响,优化安石榴苷的超声辅助提取工艺;通过测定其对DPPH自由基、羟基自由基(·OH)、超氧阴离子自由基(·O2-)和ABTS+自由基的清除能力,对安石榴苷提取物的体外抗氧化活性进行研究。结果显示,乙醇浓度和提取时间均对安石榴苷的含量有显著影响,其中乙醇浓度影响最大,料液比影响最小,最佳工艺条件为:乙醇浓度63%、料液比1∶26(g/mL)、超声功率200 W、提取时间40 min,提取1次,在此条件下安石榴苷含量达到(88.16±0.10)mg/g。体外抗氧化试验结果表明,安石榴苷提取物对DPPH自由基、·OH、·O2-和ABTS+自由基的IC50分别为101.0、227.0、341.6、35.81 μg/mL。其抗氧化活性均在一定浓度范围呈剂量效应关系。  相似文献   

11.
利用超声-微波协同处理优化花生红衣原花青素(peanut skin procyanidins,PSPc)的提取工艺,并评价其抗氧化活性。以预处理后的花生红衣为研究对象,超声-微波协同乙醇提取PSPc,在单因素(超声功率、超声时间、微波功率、微波时间、乙醇浓度、料液比、浸提温度)试验的基础上,利用Plackett-Burman(PB)试验设计筛选出影响PSPc提取量的显著因素,进一步采用响应面法对提取工艺进行优化;并且评价不同提取工艺对PSPc提取量和其抗氧化活性(DPPH自由基清除能力、羟自由基清除能力和铁离子还原/抗氧化能力)的差异性。结果表明:160 W超声10 min,240 W微波 90 s,70%乙醇、50 ℃浸提 20 min、料液比 1∶40(g/mL),在此条件下,PSPc的提取量可达到 186.38 mg/g,显著高于超声波辅助提取、微波辅助提取等其他方法(p<0.05),且有较好的抗氧化活性。  相似文献   

12.
益智仁总黄酮超声辅助提取工艺优化及其抗氧化活性   总被引:1,自引:0,他引:1  
为优化益智仁总黄酮的超声辅助提取工艺,通过单因素试验考察乙醇体积分数、液料比、超声时间和超声功率对总黄酮得率的影响,在单因素试验的基础上,通过Box-Behnken试验设计,获得益智仁总黄酮超声辅助提取的最佳工艺;以总抗氧化能力、清除1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl radical,DPPH)自由基能力、清除超氧阴离子自由基能力、螯合铁离子能力为指标,评价了益智仁总黄酮的抗氧化活性。结果表明:超声辅助提取益智仁总黄酮的最佳工艺条件为乙醇体积分数65%、液料比40∶1(mL/g)、超声时间35 min、超声功率360 W,在此条件下益智仁总黄酮得率为0.50%;益智仁总黄酮具有较好的抗氧化活性,总抗氧化能力、清除DPPH自由基能力、清除超氧阴离子自由基能力和螯合铁离子能力均与黄酮质量浓度表现出一定的量效关系;益智仁总黄酮清除DPPH自由基、清除超氧阴离子自由基和螯合铁离子能力的半数有效浓度(EC50)分别为(2.85±0.20)、(0.87±0.05)g/L和(2.45±0.30)g/L。  相似文献   

13.
松仁红衣多酚的提取及体外抗氧化活性研究   总被引:2,自引:0,他引:2  
利用超声波辅助乙醇溶剂浸提法,从松仁红衣中提取具有抗氧化活性的多酚类物质。通过单因素和正交实验,研究乙醇浓度、提取温度、料液比、超声功率、超声时间对多酚得率的影响,确定了提取多酚的最佳工艺条件:乙醇浓度60%、提取温度60℃、料液比1∶20(g/m L)、超声时间90min、超声功率300W,此条件下所得提取液的多酚得率为2.36%。并进行了松仁红衣多酚的体外抗氧化活性实验,结果表明松仁红衣多酚对羟自由基、DPPH自由基及过氧化氢均具有清除作用。  相似文献   

14.
摘要:目的 优化水龙多酚的提取工艺,测定其抗氧化活性。方法 以水龙多酚提取量为检测指标, 在单因素实验基础上运用Box-Behnken响应面法设计四因素三水平提取实验;对优选的提取方法得到的水龙多酚进行抗氧化活性测定。结果 最佳工艺条件为:超声时间40min、超声功率550w、乙醇浓度40%、料液比1:26(g/mL),在此条件下水龙多酚的提取率为28.55±0.21mg/g,其DPPH自由基清除IC50为39.1μg/mL,ABTS自由基清除IC50为108.1μg/mL。结论 提取工艺优化后,水龙多酚提取率增加,得到的水龙多酚具有较好的抗氧化活性。  相似文献   

15.
以金盏菊为原料,采用单因素结合响应面法对微波超声协同提取金盏菊皂苷工艺进行优化,并以ABTS+自由基清除率、DPPH自由基清除率和总还原能力评价其抗氧化活性。结果表明,液料比、乙醇浓度、微波功率和超声时间对金盏菊皂苷提取率的影响显著,优化后的工艺条件为液料比19∶1(mL/g),乙醇浓度56%,微波功率410 W,超声时间9.2 min,金盏菊皂苷提取率平均值为21.298 mg/g,与理论预测值相差仅为2.6%,说明由该模型优化的最佳提取工艺条件稳定可靠,具有实际应用价值。体外抗氧化试验结果表明,金盏菊皂苷对ABTS+自由基和DPPH自由基均具有良好的清除能力,且具有一定的还原能力。  相似文献   

16.
以DPPH自由基清除法检测提取物的抗氧化能力,采用Box-Behnken试验设计结合响应面分析法确定超声提取樱桃籽中抗氧化物质的最佳工艺条件.结果表明,超声提取樱桃籽清除DPPH自由基物质的优化工艺条件为超声功率500W、液料体积质量比30 mL/g、乙醇体积分数40%、提取温度50℃、提取时间5 min.在最佳提取条件下提取的原液,其总黄酮质量分数为(11.13±0.48) mg/g,具有较强的还原能力和显著的清除DPPH及羟基自由基的能力.  相似文献   

17.
为研究蒲桃叶多酚的微波辅助提取工艺,明确蒲桃叶多酚体外抗氧化活性.在单因素试验基础上通过响应面法优化蒲桃叶多酚的提取工艺,考察乙醇体积分数、液料比、微波功率、微波时间四个因素对蒲桃叶多酚提取率的影响,通过蒲桃叶多酚对DPPH自由基和羟自由基的清除效果来评价其抗氧化活性.结果表明,蒲桃叶多酚最佳提取工艺条件为乙醇体积分数...  相似文献   

18.
对南瓜果肉多酚提取工艺及抗氧化性能进行了研究。通过单因素实验和响应曲面实验,研究超声功率、超声时间、乙醇浓度和料液比对南瓜果肉多酚提取效果的影响;通过还原力和DPPH自由基清除法对南瓜果肉多酚的抗氧化活性进行研究。实验结果表明,南瓜果肉多酚最佳提取工艺条件为:超声功率237.2W、超声时间11.65min、乙醇浓度96.80%、料液比为1∶21.4(g/mL),此条件下实际南瓜果肉多酚得率为5.629%;四个因素对南瓜多酚得率影响的主次顺序为:超声时间>乙醇浓度>料液比>超声功率;南瓜果肉多酚具有一定还原力和清除DPPH.的能力,且在一定范围内,多酚浓度与其抗氧化活性呈明显的线性关系。  相似文献   

19.
以干丹桂花为原料,利用超声辅助提取丹桂花中的总黄酮。研究超声时间、超声脉冲间隙时间、超声功率、料液比、乙醇浓度、提取温度等因素对丹桂花黄酮提取率的影响,并最终确定最佳工艺条件为:超声时间15 min,超声工作时间/超声间隙时间比为5∶2,超声温度60℃,料液比1∶30(g/m L),超声功率60 W,乙醇浓度40%。通过羟自由基和超氧阴离子自由基的清除实验,表明提取的黄酮具有和BHT相当的抗氧化活性。  相似文献   

20.
为研究辣木叶多酚超声辅助提取工艺,明确辣木叶多酚体外抗氧化活性,选取超声功率、超声时间、超声温度和料液比为考察指标,研究不同工艺参数对辣木叶多酚提取量的影响,并采用响应面法优化辣木叶多酚提取工艺。此外,研究辣木叶多酚还原力及其对DPPH自由基、超氧阴离子自由基清除能力。结果表明,超声辅助提取辣木叶多酚最优工艺为:超声时间19.5 min、料液比1∶30(g/mL)、超声温度20.2 ℃、超声功率250 W。在此条件下,辣木叶多酚提取量为(25.14±0.46) mg/g。辣木叶多酚具有较强的体外抗氧化活性,其还原力、DPPH自由基和超氧阴离子自由基清除能力分别达到同等质量浓度VC的81.25%、94.15%和75.05%。该研究为辣木叶多酚等生物活性成分高效制备与抗氧化剂的深度开发提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号