首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We evaluated the sensitivity of a PCR assay in the detection of Salmonella enterica at the broth preenrichment step of poultry meat. A total of 162 retail poultry meat samples, which were prepared by manual massaging, stomacher or no homogenization were compared for Salmonella recovery. Using these homogenization methods, the PCR assay at the broth preenrichment step detected Salmonella in, respectively, 48.9%, 62.2% and 50.0% of meat and giblet samples detected as Salmonella-positive using the culture method. In ground chicken, however, Salmonella was detected in 21.7% of samples treated by stomacher homogenization, compared to 40.7% and 48% of untreated and hand-massaged samples, respectively. These results suggest that stomaching of ground chicken causes excessive effusion of food constituents, which affects PCR results. Using the most probable number (MPN) technique, Salmonella was detected at under 1.0 CFU/g in 12 ground chicken samples and under 103 CFU/ml of broth in seven of the 12 broth-enriched samples, which considered the minimum concentration detectable by PCR assay. These results show that Salmonella detection using routine PCR assays is difficult in poultry meat, and in particular ground chicken, due to low amounts of Salmonella and the presence of inhibitors.  相似文献   

2.
Contamination of powdered infant formula (PIF) by the bacteria Cronobacter spp. and Salmonella enterica was deemed a matter of great concern by the World Health Organization and the Food and Agriculture Organization of the United Nations in 2004. Therefore, we developed a rapid and sensitive multiplex real-time PCR assay for the simultaneous detection of Cronobacter and Salmonella in PIF. In addition, an internal amplification control (IAC) was also included for exclusion of false negative results in this study. The quantitative detection range for pure cultures in this optimized multiplex real-time PCR assay was 103 to 108 CFU/ml for both Salmonella and Cronobacter. When our established multiplex real-time PCR system was applied to artificially contaminated PIF, the detection limit was 103 CFU/ml for Salmonella and Cronobacter without enrichment. The commercial PIF was then inoculated with Salmonella and Cronobacter at 10, 1 and 0.1 CFU per gram of formula and the single enrichment broth samples were analyzed by multiplex real-time PCR after enrichment for 9, 12, and 24 h. At 12 h post-enrichment, we could detect Salmonella and Cronobacter at initial inoculation levels of approximately 0.1 CFU/g in PIF. Additionally, stable fluorescent IAC signals could be assessed between 29 and 34 cycles of PCR amplification. Results from this study showed that the multiplex real-time PCR assay is an effective method for the rapid and simultaneous detection and quantification of Cronobacter and Salmonella in PIF.  相似文献   

3.
Listeria monocytogenes is the etiologic agent of listeriosis responsible for severe and fatal infections in humans. Listeria contamination occurs quite often in a wide range of foods due to its ubiquitous nature. Isolates need to be characterized to a strain level for accurate diagnosis of Listeria infection, epidemiological studies, investigation of outbreaks and effective prevention and control of food-borne listeriosis. The purpose of this research was to evaluate the multiple-locus variable number of tandem repeat analysis (MLVA) for sub-typing L. monocytogenes isolates in pure cultures and in food matrices. Two multiplex PCR assays were formulated to amplify six specific loci using fluorescently-labeled primers; and the amplicons were analyzed by capillary electrophoresis. The MLVA method resulted in 34 unique DNA fingerprint patterns from 46 L. monocytogenes isolates of 10 serotypes which had 29 or 30 PFGE patterns with a single restriction enzyme and 34 AFLP patterns. The MLVA patterns of the 46 isolates remained unchanged in the presence of pre-enriched food matrices including sausage, ham, chicken, milk and lettuce. The MLVA method successfully typed L. monocytogenes strains spiked in cheese, roast beef, egg salad and vegetable samples after 48 h enrichment at the initial inoculation levels of 1-5 CFU per 25 g of food or higher. The limits of detection (typing) of the MLVA method were 103-104 CFU/mL of pre-enriched food broth when evaluated using post-spiked sausage, ham, chicken, milk and lettuce samples. The MLVA method was simple, highly discriminatory, and easy to perform with portable (numerical) results. To our knowledge, this is the first report that describes the application of the MLVA method directly to food samples and demonstrates the possibility to obtain rapid and accurate subtyping results before an isolate is obtained.  相似文献   

4.
A multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) was developed and validated for simultaneous detection of Salmonella strains and Shigella strains in milk. In this system, two sets of LAMP primers were designed to specifically target invA of Salmonella spp. and ipaH of Shigella spp. Under isothermal conditions at 63 °C, ladder pattern of DNA bands could be amplified within 60 min in the presence of genomic DNAs of Salmonella strains and Shigella strains, which could be distinguished between Salmonella spp. and Shigella spp. simultaneously based on the different ladder pattern of DNA bands and subsequent restriction enzyme analysis. The overall analysis time was approximately 20 h including the enrichment of the bacterial cells, which greatly saved detection time. The sensitivity of mLAMP was found to be 100 fg DNA/tube with genomic DNAs of Salmonella strains and Shigella strains, comparatively, multiplex PCR was 1 pg DNA/tube. The mLAMP allowed the detection of milk sample artificially contaminated by Salmonella strains and Shigella strains at initial inoculation levels of approximate 5 CFU/10 mL. In conclusion, the mLAMP described here can potentially facilitate simultaneous monitoring of Salmonella and Shigella in a large number of food samples, which could be used as a primary screening method and as a supplement to classical detection method.  相似文献   

5.
This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤ 1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤ 4.5 and ≤ 3.9 log CFU/g. Log reductions of ≤ 4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli.  相似文献   

6.
The inclusion of two sources of buffered vinegar and sodium dodecyl sulfate plus levulinic acid were studied as interventions for Salmonella Typhimurium and for their effect on shelf-life and sensory characteristics of ground beef. For the Salmonella challenge, beef trimmings (80/20) were inoculated then treated with 2% (w/v) liquid buffered vinegar (LVIN), 2.5% (w/w) powdered buffered vinegar (PVIN), a solution containing 1.0% levulinic acid plus 0.1% sodium dodecyl sulfate (SDLA) at 10% (w/v), or had no intervention applied (CNT). The same trim source and production methods were followed during production of patties for shelf-life and sensory testing without inoculation. SDLA patties had the largest reduction (P < 0.05; 0.70 log CFU/g) of Salmonella. However, LVIN and PVIN had the least (P < 0.05) psychrotrophic growth. SDLA patties had more purge (P < 0.05) and lower (P < 0.05) subjective color scores. There were not large differences in sensory characteristics, except PVIN exhibited stronger off-flavor (P < 0.05).  相似文献   

7.
The objective of the present study was to obtain data about cooking time and temperature of kiymali pide in the restaurants and to investigate thermal inactivation of E. coli O157:H7 during experimental kiymali pide making. A field study was conducted in randomly selected 23 of 87 pide restaurants. Processing parameters including oven temperature, cooking period and post-cooking temperature were determined. Kiymali pide samples were prepared using ground beef filling experimentally inoculated with E. coli O157:H7 (7.6 log10 CFU/g). Pide samples were cooked at a conventional oven at 180 °C for 180, 240, 270, 300 and 330 s. Results of the current study suggest that cooking kiymali pide at 180 °C for at least 330 s (5.5 min) may provide sufficient food safety assurance (≥ 6 log10 CFU/g) for E. coli O157:H7.  相似文献   

8.
TaqMan™ real time PCR assays were designed for each of the non-O157 STEC O serogroups most commonly associated with human illness: O26, O45, O91, O103, O111, O113, O121, O128, and O145. The nine RT-PCR assays can be run as single assays when a known pathogen is of concern, or multiplexed in three reactions, to quickly screen for the most clinically relevant O serogroups. All assays included an internal amplification control constructed from the green fluorescent protein gene as an indicator of PCR inhibition. Of 103 strains tested, the inclusive tests accurately identified the O serogroup for 101 strains. The exclusive tests for each assay yielded no false positives for over 120 Escherichia coli strains and 23 non-E. coli bacteria tested. Furthermore, the RT-PCR assays were tested by inoculating four food matrices, milk, apple juice, lettuce, and ground beef, at ≤30 CFU/25 g or mL. Following a 24 h selective enrichment, the RT-PCR assays detected STECs in all foods except for one ground beef sample inoculated with O111, and all apple juice samples inoculated with O113. The assays could also detect each O serogroup in human stool specimens inoculated with STECs at 1000 CFU/0.5 g of stool following 24 h enrichment.  相似文献   

9.
Detection of low numbers of Salmonella in complex food matrices such as ground beef by polymerase chain reaction (PCR) without enrichment is particularly difficult because of the presence of PCR inhibitors and fat. This study used soluble starch for the removal of fat in ground beef followed by the use of activated carbon coated with milk proteins for the removal of PCR inhibitors prior to conventional PCR and RealTime qPCR. This methodology without pre-enrichment allowed detection with conventional PCR of 5 CFU/g and 1 CFU/g with the real-time qPCR in ground beef containing 7%, 15%, and 27% fat. The total assay time was 5 h from the seeding of a 25 g sample of ground beef to agarose gel detection of amplicons of a 284 bp invA gene fragment specific for Salmonella and 4.5 h for real-time qPCR detection.  相似文献   

10.
Escherichia coli O157:H7 attached to beef-contact surfaces found in beef fabrication facilities may serve as a source of cross-contamination. This study evaluated E. coli O157:H7 attachment, survival and growth on food-contact surfaces under simulated beef processing conditions. Stainless steel and high-density polyethylene surfaces (2 × 5 cm) were individually suspended into each of three substrates inoculated (6 log CFU/ml or g) with E. coli O157:H7 (rifampicin-resistant, six-strain composite) and then incubated (168 h) statically at 4 or 15 °C. The three tested soiling substrates included sterile tryptic soy broth (TSB), unsterilized beef fat-lean tissue (1:1 [wt/wt]) homogenate (10% [wt/wt] with sterile distilled water) and unsterilized ground beef. Initial adherence/attachment of E. coli O157:H7 (0.9 to 2.9 log CFU/cm2) on stainless steel and high-density polyethylene was not affected by the type of food-contact surface but was greater (p < 0.05) through ground beef. Adherent and suspended E. coli O157:H7 counts increased during storage at 15 °C (168 h) by 2.2 to 5.4 log CFU/cm2 and 1.0 to 2.8 log CFU/ml or g, respectively. At 4 °C (168 h), although pathogen levels decreased slightly in the substrates, numbers of adherent cells remained constant on coupons in ground beef (2.4 to 2.5 log CFU/cm2) and increased on coupons in TSB and fat-lean tissue homogenate by 0.9 to 1.0 and 1.7 to 2.0 log CFU/cm2, respectively, suggesting further cell attachment. The results of this study indicate that E. coli O157:H7 attachment to beef-contact surfaces was influenced by the type of soiling substrate and temperature. Notably, attachment occurred not only at a temperature representative of beef fabrication areas during non-production hours (15 °C), but also during cold storage (4 °C) temperatures, thus, rendering the design of more effective sanitation programs necessary.  相似文献   

11.
A total of 387 retail meat, seafood and milk powder samples were collected from nine cities in northern China in 2005 and screened for the presence of Salmonella. Salmonella strains isolated were subjected to serotyping and antimicrobial susceptibility testing. Salmonella was isolated from 81 (20.9%, 81/387) samples and classified into 23 serotypes. The isolates were frequently resistant to sulfamethoxazole (86.4%), sulfamethoxazole/trimethoprim (48.1%), nalidixic acid (30.9%), tetracycline (19.8%), carboxybenzylpenicillin (17.3%), amoxicillin (17.3%) and ampicillin (16.0%). The multiple resistance (resistance to ≥ 3 antibiotics) was found in 29.6% (n = 24) isolates. Additionally, 4 isolates from chicken displayed the ACSSuTNx profile, resistant to ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline and nalidixic acid, in particular, strain HBS084 showing the resistance to as many as 20 antibiotics. Salmonella from chicken showed the higher frequency of antimicrobial resistance. Our findings indicate that in northern China food products of animal origin can be a source of exposure for consumers to multiresistant Salmonella strains.  相似文献   

12.
This study determined Salmonella prevalence at different stages during the slaughtering in three beef slaughter plants (A, B and C) located in the western region of Venezuela (Zulia and Lara states). Each facility was visited three times at monthly intervals, from the months October through December of 2006. Samples were collected from hides (n = 80), fecal grabs (n = 80) and carcasses (n = 80) at the phases of pre-evisceration, after-evisceration and pre-cooler at three sampling sites on the animals (rump, flank and brisket). Salmonella prevalence was higher on hides (36.3%) than on feces (13.8%) (P < 0.05). Differences among slaughter plants for overall Salmonella prevalence were observed (P = 0.001; A: 3.5%, B: 11.1%, C: 4.4%). From the isolated strains, Salmonella enterica subspecies enterica ser. Saintpaul, Salmonella ser. Javiana and Salmonella ser. Weltevreden were identified. Cattle feces and hides might be considered as important sources of Salmonella for carcass contamination at different slaughter stages. The presence of potentially pathogenic Salmonella serotypes at the slaughtering stages is an evidence of the circulation of this pathogen in the food environment; its presence could increase consumers' risks of infection if proper food handling and preparation techniques are not followed. These data should serve as a baseline for future comparisons in Salmonella prevalence on beef carcasses to be used by the government and industry in order to establish preventive measures and to better address the risks of Salmonella contamination.  相似文献   

13.
Salmonella remains the primary cause of reported bacterial food borne disease outbreaks in Belgium. Pork and pork products are recognized as one of the major sources of human salmonellosis. In contrast with the primary production and slaughterhouse phases of the pork meat production chain, only a few studies have focussed on the post-harvest stages. The goal of this study was to evaluate Salmonella and Escherichia coli contamination at the Belgian post-harvest stages. E. coli counts were estimated in order to evaluate the levels of faecal contamination. The results of bacteriological analysis from seven cutting plants, four meat-mincing plants and the four largest Belgian retailers were collected from official and self-monitoring controls. The prevalence of Salmonella in the cutting plants and meat-mincing plants ranged from 0% to 50%. The most frequently isolated serotype was Salmonella typhimurium. The prevalence in minced meat at retail level ranged from 0.3% to 4.3%. The levels of Salmonella contamination estimated from semi-quantitative analysis of data relating to carcasses, cuts of meat and minced meat were equal to −3.40 ± 2.04 log CFU/cm2, −2.64 ± 1.76 log CFU/g and −2.35 ± 1.09 log CFU/g, respectively. The E. coli results in meat cuts and minced meat ranged from 0.21 ± 0.50 to 1.23 ± 0.89 log CFU/g and from 1.33 ± 0.58 to 2.78 ± 0.43 log CFU/g, respectively. The results showed that faecal contamination still needs to be reduced, especially in specific individual plants.  相似文献   

14.
John Waswa  Joseph Irudayaraj 《LWT》2007,40(2):187-192
The SpreetaTM, surface plasmon resonance (SPR)-based biosensor, was used to detect Escherichia coli O157:H7 spiked in milk, apple juice and ground beef extract using specific antibodies. In the SpreetaTM biosensor light from an LED is reflected off a gold surface, and the angle and intensity corresponding to the SPR minimum is measured and represented as a refractive index (RI) change corresponding to the antigen-antibody coupling at the sensor surface. Milk, apple juice, and ground beef patties spiked with E. coli O157:H7, at varying concentrations, were injected on the sensor surface immobilized with antibodies against the pathogen at a rate of 1 ml/min for a total of 2 min. The change in RI due to the binding of O157:H7 corresponding to each concentration was computed as an average of three replications over a 2 min interaction period. Assays were conducted at near real-time and results obtained after about 30 min of sample injection. Sensitivity of the E. coli O157:H7 assay was 102-103 colony forming unit (CFU)/ml. The biosensor assay was also specific to E. coli O157:H7 as other organisms (E. coli K12 and Shigella) did not produce any appreciable change in the sensogram. Further experiments are needed to establish well-defined methods for detecting other food-borne pathogens in more complex and specific food matrices.  相似文献   

15.
The objective of this study was to validate the effectiveness of acetic and lactic acids (2% and 5%), acidified sodium chlorite (1000 ppm), and sterile water in reducing Escherichia coli O157:H7 and Salmonella Typhimurium in inoculated beef trim in a simulated processing environment. Samples were collected to assess microbial characteristics at three processing points. Results from this study indicate that all treatments, including sterile water, reduced pathogen concentrations (P < 0.05) of both E. coli O157:H7 and Salmonella Typhimurium in ground beef up to 0.5 and 0.6 log by 24 h, respectively. In some cases, there were no significant differences between the antimicrobial treatments and the sterile water using this application method. Triangle sensory test results of non-inoculated beef indicated there were no differences (P < 0.05) in the means of correct responses between controls or antimicrobial treatments at 6 or 24 h. While interventions are important for beef trim, use of the interventions must be validated under industry conditions to ensure proper effectiveness.  相似文献   

16.
The objectives of this study were to isolate psychrotrophic clostridia from Brazilian vacuum-packed beef cuts (spoiled or not) and to identify the isolates by using 16S rRNA gene sequencing. Anaerobic psychrotrophic microorganisms were also enumerated and samples were collected to verify the incidence of psychrotrophic clostridia in the abattoir environment. Vacuum-packed beef cuts (n = 8 grossly distended and n = 5 non-spoiled) and environmental samples were obtained from a beef packing plant located in the state of São Paulo, Brazil. Each sample was divided in three subsamples (exudate, beef surface and beef core) that were analyzed for vegetative forms, total spore-forming, and sulfide reducing spore-forming, both activated by alcohol and heat. Biochemical profiles of the isolates were obtained using API20A, with further identification using 16S rRNA gene sequencing. The growth temperature and the pH range were also assessed. Populations of psychrotrophic anaerobic vegetative microorganisms of up to 1010 CFU/(g, mL or 100 cm2) were found in ‘blown pack’ samples, while in non-spoiled samples populations of 105 CFU/(g, CFU/mL or CFU/100cm2) was found. Overall, a higher population of total spores and sulfide reducing spores activated by heat in spoiled samples was found. Clostridium gasigenes (n = 10) and C. algidicarnis (n = 2) were identified using 16S rRNA gene sequencing. Among the ten C. gasigenes isolates, six were from spoiled samples (C1, C2 and C9), two were isolated from non-spoiled samples (C4 and C5) and two were isolated from the hide and the abattoir corridor/beef cut conveyor belt. C. algidicarnis was recovered from spoiled beef packs (C2). Although some samples (C3, C7, C10 and C14) presented signs of ‘blown pack’ spoilage, Clostridium was not recovered. C. algidicarnis (n = 1) and C. gasigenes (n = 9) isolates have shown a psychrotrophic behavior, grew in the range 6.2-8.2. This is the first report on the isolation of psychrotrophic Clostridium (C. gasigenes and C. algidicarnis) in Brazil. This study shows that psychrotrophic Clostridium may pose a risk for the stability of vacuum-packed beef produced in tropical countries during shelf-life and highlights the need of adopting control measures to reduce their incidence in abattoir and the occurrence of ‘blown pack’ spoilage.  相似文献   

17.
A rapid method for the detection of Listeria monocytogenes in foods combining culture enrichment and real-time PCR was compared to the ISO 11290-1 standard method. The culture enrichment component of the rapid method is based on the ISO standard and includes 24 h incubation in half-Fraser broth, 4 h incubation in Fraser broth followed by DNA extraction and real-time PCR detection of the ssrA gene of L. monocytogenes. An internal amplification control, which is co-amplified with the same primers as the L. monocytogenes DNA, was also included in the assay. The method has a limit of detection of 1–5 CFU/25 g food sample and can be performed in 2 working days compared to up to 7 days for the ISO standard. A variety of food samples from retail outlets and food processing plants (n = 175) and controls (n = 31) were tested using rapid and conventional methods. The rapid method was 99.44% specific, 96.15% sensitive and 99.03% accurate when compared to the standard method. This method has the potential to be used as an alternative to the standard method for food quality assurance providing rapid detection of L. monocytogenes in food.  相似文献   

18.
Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica are the most common foodborne bacterial pathogens and are responsible for many outbreaks. Therefore, multiplex detection of these three using a single assay platform is highly desirable. The objective was to develop and optimize a fiber optic sensor for simultaneous detection of these three from food. The streptavidin coated optical waveguides were immobilized with biotinylated polyclonal antibodies and exposed to the bacterial suspensions or enriched food samples for 2 h. Pathogens were detected after reacting with Alexa-Fluor 647-labeled monoclonal antibodies. Ready-to-eat beef, chicken and turkey meats were inoculated with each pathogen (∼100 cfu/25 g), enriched in SEL (Salmonella, E. coli, Listeria), a multipathogen selective enrichment broth for 18 h and tested with the biosensor. The biosensor was able to detect each pathogen, individually or in a mixture with very little cross-reactivity. The limit of detection for the sensor was ∼103 cfu/ml for all three pathogens. Furthermore, the biosensor successfully detected each pathogen, grown in a mixture from enriched meat samples under 24 h. The pathogen presence was further verified by PCR and immunofluorescence assay. The multiplex fiber optic sensor shows promise for detection of the three pathogens if present in the same sample eliminating the use of multiple single pathogen detection platforms.  相似文献   

19.
Fifty-nine commercial dairy farms were sampled 7 times over 15 to 21 mo to determine the role of animal movement, including off-farm rearing of heifers, in the interherd transmission of multidrug-resistant (MDR) Salmonella spp. Farm management data were collected by on-site inspections and questionnaires on herd management practices before and after the study. Forty-four percent (26/59) of herds did not acquire any new MDR Salmonella strains. The number of newly introduced MDR Salmonella strains acquired by the remaining 56% (33/59) of herds ranged from 1 to 8. Logistic regression models indicated that off-farm heifer raising, including contract heifer raising where heifers commingle with cattle from other farms [commingled heifers, odds ratio (OR) = 8.9, 95% confidence interval (CI): 2.4, 32.80], and herd size per 100-animal increment (herd size, OR = 1.04, 95% CI, 1.01, 1.05) were significantly associated with the introduction of new MDR Salmonella strains. The negative binomial regression similarly revealed that commingled heifers [relative risk (RR) = 2.3, 95% CI: 1.1, 4.7], herd size per 100 animals (RR = 1.02, 95% CI, 1.01, 1.03), and a history of clinical salmonellosis diagnosed before the study (RR = 2.5, 95% CI, 1.3, 5.0) were significantly associated with the number of new MDR Salmonella strains that were introduced. Factors not associated with the introduction of new MDR Salmonella strains were housing of heifers and cows in the same close-up pen, a common hospital-maternity pen, and the number of purchased cattle. This study highlights the role of animal movement in the interherd transmission of MDR Salmonella spp.  相似文献   

20.
Salmonella has been recognized as a major foodborne pathogen for humans and animals. In this study, a multiplex real-time recombinase polymerase amplification (RPA) was developed for simultaneous detection of Salmonella enterica serovars, Salmonella enteritidis and Salmonella typhimurium, from chicken, eggs, lettuce, and papaya. The reaction was performed for 20 min at 35°C, and the detection limit of the assay was 102 CFU/ml for pure culture. In food application, the limit of detection (LOD) of S. enteritidis and S. typhimurium using multiplex real-time RPA without enrichment procedure was 102 CFU/25 g, respectively. After enrichment, the LOD of S. enteritidis and S. typhimurium was 10 CFU/25 g. Moreover, the result for Salmonella spp. was not significantly different from those obtained using a culture-based method. Additionally, the assay has a lower cross-reactivity with other pathogenic microorganisms and a good stability performance. Thus, the developed multiplex RPA assay could be used as a rapid tool for the detection of S. enteritidis and S. typhimurium in food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号