首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, researchers prepared polyimide/silica–titania core–shell nanoparticle hybrid thin films (PI/SiO2–TiO2) from soluble fluorine-containing polyimide, colloidal silica, and titanium butoxide. The soluble polyimide with carboxylic acid end groups (6FDA–6FpDA–4ABA–COOH) could condense with titanium butoxide to provide organic–inorganic bonding, and thus prevent macrophase separation. TGA and DSC analysis showed that the decomposition temperature of hybrid materials increased with an increase in the content of silica–titania nanoparticles within the hybrid films. FTIR spectra indicated that the imidization was complete and the cross-linking Ti–O–Ti network formed. HRTEM and HRSEM images showed that the size of the core–shell nanoparticles were 18–20 nm. The thickness of titania shell on the silica is about 2.5 nm. The n&k and UV–Vis analysis showed that the prepared hybrid films had good optical properties and a high refractive index of 1.735. Researchers applied the prepared PI/SiO2–TiO2 hybrid thin films to develop a three layer antireflective (AR) coating on the glass and PMMA substrate. Results showed that the reflectance of the AR coating on the glass and PMMA substrate at 550 nm was 0.356 and 0.495%, respectively. The transparency was greater than 90% for both AR coatings on the glass and PMMA substrates.  相似文献   

2.
This study prepared polyimide/titania hybrid thin films of, poly(3,3′,4,4′-Benzophenone tetra carboxylic dianhydride)–(4,4-Diaminodiphenyl Ether)/nanocrystalline titania (BTDA-ODA/TiO2), with a high refractive index. FTIR analysis confirmed the formation of a polyimide and titania matrix. TGA and DSC analysis gauged the decomposition temperature in the range of 455–532 °C, indicating that the addition of titania could increase the glass transition temperature of hybrid films. XRD results indicate the formation of nanocrystalline titania domains of approximately 8–11 nm in the hybrid films. AFM, SEM, TEM, and XRD results show the formation of well-dispersed nanocrystalline titania. The refractive index was measured by ellipsometry, demonstrating an increase in the refractive index of the prepared hybrid thin films from 1.657 to 1.958, when the titania content was increased from 0 to 90 wt.%. UV–vis analysis gauged the cutoff wavelength in the range of 288–357 nm. The prepared polyimide/titania hybrid thin films were used to develop a three layer antireflective (AR) coating on a glass substrate. The average reflectance of the AR was 0.5% for the PT20/PT90/F-siloxane layer and 0.6% for the PT20/PT90/porous silica. Transparency at 550 nm exceeded 90% for both AR coatings.  相似文献   

3.
Synthesis and characteristics of polyimide/titania nano hybrid films   总被引:2,自引:0,他引:2  
Polyimide/titania (PI/TiO2) nano hybrid films are synthesized by sol-gel technology. [4,4′-(4,4′-Isopropylidenediphenoxy) bis (phthalic anhydride)] (IDPA), 4,4′-diaminodiphenyl ether (ODA) and 3-aminopropyltrimethoxysilane (APrTMOS) mixed entirely and reacted at room temperature to form the polyamic acid (PAA). Tetraethyl orthotitanate (Ti(OEt)4) and actylacetone, the latter one is used as chelating agent, are then added to the polyamic acid. After imidization at high temperature, PI/TiO2 hybrid films with different block chain length, 5000 of PAA and 15000 g mol− 1, and a cross-linked structure are formed. The resulting hybrid films, containing relatively small amounts of titania, exhibit higher transparency and flexibility. Moreover, as compared with pure PI, the hybrid film formed from APrTMOS has better ability to form a film with a higher titania content. Due to the high and low refractive index (RI) of TiO2 and APrTMOS, their introduction may lead to the change of the RI of hybrid films. From the transmission electron microscope (TEM) images; the particle size of titania decreases with increasing APrTMOS content. Thermal decomposition temperatures (Td), with a 5% weight loss, are in the range of 400-540 °C. The dynamic mechanical thermal analysis showed a systematic increase of glass transition temperature, along with a broader and weaker tan δ peak with increasing titania content.  相似文献   

4.
This article examines the effects of structural changes and thermal aging treatments on the relaxation processes and mechanical properties of three polyimides differing for their molecular structure i.e. PMDA-ODA, 6FDA-ODA, and 6FDA-6FpDA. These polyimides were obtained by thermal imidization of their polyamic acid precursors, which were synthesized from the respective dianhydrides [pyromellitic anhydride (PMDA), hexahydrofluoroisopropylidene diphthalic anhydride (6FDA)], and diamines [4,4′-diaminodiphenyl ether (ODA), 4,4′-(hexafluoroisopropylidene) dianiline (6FpDA)]. After the curing process, the polyimides were thermally aged at a fixed temperature for various times Dynamic mechanical measurements performed in a multi-frequency mode, were used to determine the glass-rubber and sub-glass transitions, as well as the activation energy of the β transition. It was found that the T g decreased in the order PMDA-ODA > 6FDA-6FpDA > 6FDA-ODA as a result of an increased chain rigidity and molecular packing induced by charge transfer interactions during the thermal imidization process. The β sub-glass transition showed two relaxation processes identified as β′ and β′′. The β′ process was attributed to the local motion of the diamine constituents while the β′′ process was caused by the local motion of the dianhydride moiety. The cooperativity of these molecular motions was also assessed via the Starkweather method. The thermal aging enhanced the state of aggregation of polyimide chains and thus the T g and the sub-glass transition properties. This effect was particularly marked for the PMDA-ODA polyimide. Also the mechanical properties were significantly affected by chemical structure and aging treatments. For non-aged samples the more influenced parameter was the elongation at break, which decreased in the order PMDA-ODA > 6FDA-ODA > 6FDA-6FpDA. The aging enhanced the elastic modulus and the tensile strength and reduced the elongation at break.  相似文献   

5.
Titanium dioxide (TiO2) thin films have been produced by spin coating a titanium isopropoxide sol on silicon wafer substrates. The structural evolution of the thin films in terms of decomposition, crystallization and densification has been monitored as a function of annealing temperature from 100 to 700 °C using optical characterization and other techniques. The effect of annealing temperature on the refractive index and extinction coefficient of these TiO2 thin films was studied in the range of 0.62 to 4.96 eV photon energy (250-2000 nm wavelength) using spectroscopic ellipsometry. Thermal gravimetric analysis and atomic force microscopy support the ellipsometry data and provide information about structural transformations in the titania thin films with respect to different annealing temperatures. These data help construct a coherent picture of the decomposition of the sol-gel precursors and the creation of dense layers of TiO2. It was observed that the refractive index increased from 2.02 to 2.45 at 2.48 eV (500 nm) in sol-gel spin coated titania films for annealing temperatures from 100 °C to 700 °C.  相似文献   

6.
Highly ordered mesoporous titanium dioxide (titania, TiO2) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO2-buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO2 (~ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.  相似文献   

7.
Spin-coated polyimide thin films were locally cured using microelectromechanical system microhotplates as an alternative approach to the conventional wafer-level curing process. The on-chip cured polyimide films were characterized Fourier transform infrared spectroscopy. The polyimide was found to be fully cured at a temperature over 350 °C for 1 h. The dielectric properties of 350 °C-cured polyimide films were measured over broad frequency, temperature, and humidity ranges. As is expected for most polymer materials, the dielectric constant decreased with increasing frequency due to dielectric relaxation, which may be due to the fact that multiple relaxation times (i.e., several types of polarization), rather than a single one are involved. The dissipation factor was very low and nearly flat for excitation frequencies less than 1 MHz. Both the dielectric constant and the dissipation factor increased with increasing temperature from 10 °C to 90 °C, and relative humidity (RH) from 30%RH to 95%RH, with a steeper slope at lower frequencies. These results indicate that on-chip-cured polyimide films have weak low frequency dispersion due to the aging effect at high temperature and humidity.  相似文献   

8.
In this study, poly(4,4-(hexafluoroisopropylidenediphthalic anhydride)-co-oxydianiline) (6FDA-ODA) and a novel core-shell nanoparticle consisting of a core (SnO2/TiO2) and a shell (ZrO2/Sb2O3) with the composition (SnO2:TiO2:ZrO2:Sb2O3 = 18:5:3:4) were used to prepare polyimide/nanoparticles hybrid thin films. The resultant hybrid thin films were investigated by FTIR, TGA, DSC, TEM, SEM, AFM, alpha-step, UV-Vis, and n&k analyses. The results show that the prepared hybrid thin films had a good thermal stability. The size of nanoparticles was effectively controlled in the range of 8-10 nm in the hybrid thin films. These nanoparticles were evenly distributed across the hybrid thin films and no phase separation occurred. In terms of the optical properties, the prepared hybrid thin films had good transparency in the range of visible light. The cutoff wavelength had a blue shift as the content of the nanoparticles increased. The refractive index of prepared hybrid thin films increased with corresponding increases in nanoparticle content. Moreover, the prepared polyimide/core-shell nanoparticle hybrid thin films displayed excellent film formability and planarity.  相似文献   

9.
Polymethylmethacrylate (PMMA)-perhydropolysilazane (PHPS) hybrid thin films doped with spiropyran were prepared by spin-coating, which were then converted into 0.26-1.7 μm thick, spiropyran-doped PMMA-silica hybrid films by exposure treatment over aqueous ammonia. The spiropyran/(spiropyran + PHPS + PMMA) mass ratio was fixed at a high value of 0.2 so that the films exhibit visual photochromic changes in color, while the PMMA/(PMMA + PHPS) mass ratio, r, was varied. The spiropyran molecules in the as-prepared films were in merocyanine (MC) and spiro (SP) forms, with and without an optical absorption at 500 nm, at low (r ≤ 0.2) and high (r ≥ 0.4) PMMA contents, respectively. When PMMA content r was increased from 0 to 0.2, the degree of the MC-to-SP conversion on vis light illumination was enhanced, while at higher r's the spiropyran molecules underwent photodegradation. When the silica film (r = 0) was soaked in xylene under vis light, the spiropyran molecules were almost totally leached out, while not on soaking in the dark. On the other hand, no leaching occurred for the film of r = 0.2 either in the presence or absence of vis light. These suggest that the introduction of PMMA is effective in improving the chemical durability of the films, while the silica film (r = 0) is an interesting material with a photoresponsive controlled-release ability. The pencil hardness of the films decreased with increasing PMMA content, but remained over 9H at r ≤ 0.4.  相似文献   

10.
Variable angle spectrometric ellipsometry at room temperature is used to determine thin film parameters of substrates used in liquid crystal displays. These substrates consist of sequential thin films of polyimide (PI), on indium tin oxide (ITO),on SiO2 deposited on a glass backing approximately 1.1 mm thick. These films were studied by sequentially examining more complex systems of films (SiO2, SiO2-ITO, SiO2-ITO-PI). The SiO2 layer appears to be optically uniform and flat. The ITO film is difficult to characterize. When this surface film's lower surface is SiO2 and upper surface is an air-ITO-interface it is found that including surface roughness and variation of the optical properties with ITO thickness in the model improved the fit; suggesting that both phenomena exist in the ITO films. However, the surface roughness and graded nature of optical properties could be not determinable by ellipsometry when the ITO is coated with a polyimide film. The PI films are ellipsometrically flat and over the wavelength range from 500 to 1400 nm the real refractive index of polyimide films varying in thickness between 25 and 80 nm is well modeled by a two-term Cauchy model with no absorption. The ellipsometric thickness of the ITO layer is the same as the profilometric thickness; however, the ellipsometric thickness of the polyimide layers is roughly 10 nm larger than that obtained from the profilometer. These final observations are consistent with the literature.  相似文献   

11.
Sol–gel derived poly(methyl methacrylate)–titania hybrid materials were synthesized by using acrylic acid or allyl acetylacetone (3-allyl-2,4-pentanedione) as coupling agent. Titanium butoxide modified with acrylic acid (or titanium isopropoxide modified with allyl acetylacetone) was hydrolysed to produce a titania network, and then poly(methyl methacrylate) (PMMA) chains, formed in situ through a radical polymerization, were chemically bonded to the forming titania network to synthesize a hybrid material. Transparent hybrid materials with different contents of titania were achieved. With increase of the titania content, the colours of the products changed from yellow to dark red. The synthesis process was investigated step by step by using Fourier transform–infrared spectroscopy, and the experimental results demonstrated that acrylate or acetylacetonato groups bound to titanium remain in the final hybrid materials. The thermal stability of the hybrid materials was considerably improved relative to pure PMMA. Field emission scanning electron microscopy analyses showed the hybrid materials are porous and pore diameters vary from 10–100 nm. The hybrid materials using allyl acetylacetone as coupling agent exhibited a thermochromic effect that neither pure PMMA nor titania exhibit. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Structural and microstructural analyses of nanocrystalline titania thin films prepared by pulsed laser deposition have been carried out. At lower oxygen partial pressures (≤10−4 mbar), rutile films were formed, whereas at 1.2 × 10−3 mbar of oxygen partial pressure, the thin films contained both rutile and anatase phases. At 0.04 and 0.05 mbar of oxygen partial pressure, the film was purely anatase. Addition of oxygen has also shown a profound influence on the surface morphology of the as deposited titania films. Modified Rietveld method has been used to determine crystallite size, root mean square strain and fractional coordinates of oxygen of the anatase films. The influence of crystallite size and strain on the rutile to anatase phase transition is investigated.  相似文献   

13.
We report the synthesis, properties and anti-reflective applications of new colorless polyimide-inorganic hybrid thin films prepared from 1,4-bis(3,4-dicarboxyphenoxy)-2,5-di-tert-butylbenzene dianhydride (DDBBDA)/oxydianiline (ODA) with silica or titania precursors. The experimental results suggest that the prepared hybrid films have good thermomechanical properties, excellent transparence, tunable refractive indices of 1.550–1.847, and low optical birefringence. The nanocrystalline titania domain size analyzed form TEM and XRD is in the range of 10–20 nm in the hybrid materials. Three-layer anti-reflective films on glass or polymer substrates processed from the hybrid precursors have a relatively low reflection of less than 0.5% in the visible range. These results indicate that the newly prepared colorless polyimide-inorganic hybrid materials have potential applications for optical devices.  相似文献   

14.
Tung-Lin Li 《Thin solid films》2010,518(23):6761-6766
High temperature, flexible and colorless indium-tin-oxide (ITO) coated plastic substrates have been prepared from a series of thermally stable, high glass transition temperature (Tg) and colorless copolyimide films. The copolyimides were synthesized from 3,3′-diaminodiphenylsulfone, 9,9′-bis(4-aminophenyl) fluorene and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride monomers. Their Tgs were around 285-365 °C. The conductive ITO was synthesized by a sol-gel method, and then deposited onto the copolyimide films by a spin coating process. After thermal treatment at 300 °C under a nitrogen/hydrogen mixture gas for 24 h, the resistivity of the ITO film was 103 Ω cm, and its transmittance was 75% at the visible light region. Scanning electron microscopy and X-ray diffraction were used to observe the surface and morphology of the ITO films. UV-visible spectroscopy and the four-probe method were used to study their optical and electrical properties. The high performance ITO/plastic substrates can be used in the next generation flexible flat panel displays and solar cell.  相似文献   

15.
Sol-gel TiO2 thin films were dip coated on soda lime glass substrate using tetraisopropoxide as titania precursor. Four withdrawal speeds were tested and the resulting dried thin films have been annealed at 400 °C, 450 °C and 500 °C for 1 h. Glancing Incidence X-ray Diffraction has revealed the amorphous nature of the thin films whatever is the annealing temperature. In order to study the thin films densification, X-ray Reflectometry curves have been fitted by a three layers Parrat model and by the Distorded Wave Born Approximation (DWBA) box model which provides more details on the Electron Density Profile. The presence of high density layers localized at the film surface and at the substrate-film interface has been evidenced for the annealed films. The DWBA fitting method allows us to point out a density gradient, probably arising from the initial packing density and to the constraint due to the substrate, along the film thickness.  相似文献   

16.
以4,4’-六氟亚异丙基-邻苯二甲酸酐(6FDA)和4,4’-二胺基二苯醚(4,4’-ODA)为原料制备了含氟聚酰亚胺薄膜,然后通过水解、激光打印、离子交换、化学还原等技术得到银和铜双金属的图案化聚酰亚胺薄膜。通过X-射线衍射仪、四点探针测试仪、光学显微镜、扫描电子显微镜等仪器系统研究了薄膜表面金属的形成过程及水解时间与导电性的关系。实验结果表明,随着水解时间的增加,金属线条的导电性逐渐增加,电导率最大达到500s/cm。  相似文献   

17.
A series of colorless and transparent polyimide (PI) nanocomposite films was synthesized from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and bis(3-aminophenyl) sulfone (APS) with various organoclay contents via solution intercalation polymerization to poly(amic acid)s, followed by thermal imidization. Varying the organoclay loading in the range of 0 to 1.00 wt% produced variations in the thermal properties, morphologies, and optical transparencies of the hybrids. The hybrid films exhibited high optical transparencies and almost no color, with cut-off wavelengths between 330 and 346 nm and very low yellow index (YI) values of 1.78-3.80. The hybrid PI films showed good thermal properties with glass transition temperatures of 236-245 degrees C. Most films did not show significant thermal decomposition below 450 degrees C. It was found that the addition of only a small amount of organoclay was sufficient to improve the thermal properties of the PI films, with maximum enhancements being observed at 0.50 wt% organoclay. Moreover, these PI hybrids also showed low coefficients of thermal expansion (CTE).  相似文献   

18.
Ferroelectric Na0.5La0.5Bi4Ti4O15 (NaLaBTi) thin films were prepared by a chemical solution deposition method. The NaLaBTi thin films annealed at 750 °C under oxygen atmosphere were randomly oriented polycrystalline. Electrical properties of the NaLaBTi thin films were compared to Na0.5Bi4.5Ti4O15 thin films and better properties were observed in the NaLaBTi thin films. Remnant polarization (2Pr) and coercive electric field (2Ec) were 43 µC/cm2 and 204 kV/cm at an applied electric field of 478 kV/cm, respectively. Leakage current density was 1.95 × 10− 6 A/cm2 at 100 kV/cm. Dielectric constant and dielectric loss were 805 and 0.05 at 1 kHz, respectively. Switchable polarization was suppressed by 15% after 1.44 × 1010 switching cycles.  相似文献   

19.
Poly(methylmethacrylate) (PMMA) based nanocomposite electron beam resists have been demonstrated by spin coating techniques. When TiO2 and Al2O3 nanoparticles were directly dispersed into the PMMA polymer matrix, the resulting nanocomposites produced poor quality films with surface roughnesses of 322 and 402 nm respectively. To improve the surface of the resists, the oxide nanoparticles were encapsulated in toluene and methanol. Using the zeta potential parameter, it was found that the stabilities of the toluene/oxide nanoparticle suspensions were 7.7 mV and 19.4 mV respectively, meaning that the suspension was not stable. However, when the TiO2 and Al2O3 nanoparticles were encapsulated in methanol the zeta potential parameter was 31.9 mV and 39.2 mV respectively. Therefore, the nanoparticle suspension was stable. This method improved the surface roughness of PMMA based nanocomposite thin films by a factor of 6.6 and 6.4, when TiO2 and Al2O3 were suspended in methanol before being dispersed into the PMMA polymer.  相似文献   

20.
Highly transparent YVO4:Eu thin films were deposited via dip coating of liquid nanoparticle dispersions on glass substrates. Annealing of the nanoparticle layers resulted in restructuring of the material into oriented crystalline films. The crystallinity was confirmed using powder X-ray diffraction. Film thickness was adjusted to 467 nm by multiple deposition. The resulting coatings show > 99% absorbance for wavelength below 300 nm and > 90% transmission in the visible spectral range. Under UV-light excitation a bright red photoluminescence with a quantum efficiency of 20% is observed. A planar, transparent dielectric barrier discharge lamp was constructed using YVO4:Eu coated glasses and transparent electrodes made from antimony-doped tin dioxide thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号