首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

2.
采用自模板法制备了Ni掺杂的锰酸锂纳米棒,利用X射线衍射、扫描电子显微镜表征其结构和形貌,并对其电化学充放性能进行了分析。结果表明:当Ni掺杂量x=0.1时所获得的产物LiNi_(0.1)Mn_(1.9)O_4的容量保持率较好,且具有较好的高温大倍率循环性能。在50℃以3C倍率循环500周后,LiNi_(0.1)Mn_(1.9)O_4纳米棒容量保持率达70%,而未掺杂的LiMn_2O_4纳米棒仅能保持33%。  相似文献   

3.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

4.
采用湿法制备了聚乙烯吡咯烷酮(PVP)辅助尖晶石型LiMn204包覆LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2复合正极材料(LMO@NCM)。以X射线粉末衍射仪、扫描电子显微镜和透射电子显微镜技术对正极材料的晶体结构、形貌进行表征。采用充放电测试、电化学阻抗谱(EIS)和循环伏安法(CV)研究正极材料的电化学性能。结果表明,乙酸锰添加量为1.0%(质量分数)的LMO@NCM正极材料具有高容量、良好的倍率与循环性能。该样品0.2C首次放电容量达182.7 mAh/g,在0.5C倍率下循环50次后其容量保持率为83.7%。PVP辅助的尖晶石型LiMn_2O_4包覆层提高材料的电子导电率,抑制了电极界面的副反应,进而提高了材料的电化学性能。  相似文献   

5.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

6.
采用静电纺丝技术结合低温固相煅烧合成了中空多孔的LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维,并通过球磨方式实现了碳纳米管表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维。采用TG-DTA、XRD、SEM等分析手段,对合成样品的煅烧温度、物相结构和微观形貌进行表征,然后对其综合电化学性能进行研究。结果表明:CNT表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维可显著改善材料的综合电化学性能。其首次放电比容量达到242.8m Ah/g,1C循环50次后容量保持率达到91.61%,2C倍率放电比容量达到165.8m Ah/g。CNT独特的管状结构,促进了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量的发挥,同时为循环过程中电极体积变化提高缓冲层,改善了材料的电子电导率,结合LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维中空多孔结构为锂离子快速扩散提供了通道,从而实现了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量、倍率和循环性能的显著提高。  相似文献   

7.
采用固相燃烧法快速合成了LiNi0.08FexMn1.92-xO4(x≤0.08)正极材料,并探究了正极材料样品的结构、形貌、电化学性能及动力学性能。结果表明,Ni-Fe共掺没有改变LiMn2O4的立方尖晶石结构,促进了其晶体发育和{111}、{110}、{100}晶面的择优生长,部分颗粒形成了以高暴露{111}晶面为主和少量{110}、{100}晶面的截断八面体形貌。LiNi0.08Fe0.05Mn1.87O4样品在较低倍率(≤5 C)时,其倍率性能和长循环寿命得到显著提高,在25℃下,1 C的首次放电比容量为106.1 mAh/g, 1 000次循环后容量保持率为82.0%;5 C的首次放电比容量为100.1 mAh/g, 2 000次循环后容量保持率为72.8%。LiNi0.08Fe0.05Mn1.87  相似文献   

8.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

9.
将商业化尖晶石材料Li Mn2O4(LMO)和层状三元正极材料LiMn_2O_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)按照一定比例混合,考察混合工艺对两种电极材料结构和电化学性能的影响。结果表明,球磨后混合材料的粒径减小;同时LMO的引入改善了NCA的循环稳定性和倍率性能,当LMO∶NCA的混合配比为7∶3时,混合材料具有最佳的性能,其50次循环后的容量保留率为94.89%,5 C倍率下的放电容量为90.2 m Ah/g;充放电测试表明球磨混合材料循环性能稳定,50次循环后容量保持率较高;球磨混合也改善了NCA的高倍率性能。  相似文献   

10.
分别用化学二氧化锰、电解二氧化锰、MnCO_3和Mn_3O_4为锰源,通过高温固相法合成尖晶石LiMn_2O_4。采用X射线衍射仪、扫描电子显微镜、恒电流充放电技术、交流阻抗及电位阶跃法,对合成的尖晶石LiMn_2O_4物相、形貌以及电化学性能进行检测分析。结果表明,由Mn_3O_4制备的LiMn_2O_4的X射线衍射峰强度最大且粒度较为均匀。在室温条件下,以0.2C倍率充放电循环20次,Mn_3O_4制备的LiMn_2O_4首次充放电比容量为128.3 mA·h/g,容量保持率为97.1%,优于另外三种锰源作为原料合成的尖晶石LiMn_2O_4。化学二氧化锰、电解二氧化锰、MnCO_3、Mn_3O_4合成尖晶石LiMn_2O_4电极材料的扩散系数DLi+分别为2.26×10~(-11),4.54×10~(-11),0.83×10~(-11),8.25×10~(-11)cm~2/s。  相似文献   

11.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

12.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

13.
采用高温固相法通过不同混料介质与相应的干燥方法合成了形貌为球状和分散状的LiNi_(0.5)Mn_(1.5)O_4。利用FE-SEM、XRD及充放电性能测试等手段对比了材料的形貌、物相和电化学行为。结果表明:分散状的材料由于一次粒子更小具有优良的电化学性能,0.2 C倍率下材料的首次放电比容量为135 mAh/g,12 C倍率下放电比容量为115 mAh/g。1C倍率充放电循环50次容量保持率为99.5%。  相似文献   

14.
采用熔盐燃烧法制备Ni和Cr共掺杂尖晶石LiNi_(0.01)Cr_xMn_(1.99-x)O_4(掺杂Cr的量x≤0.07)正极材料,以改善锂离子电池正极材料的电化学性能。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)等对其晶体结构、微观形貌和物相组成进行表征,并利用恒电流充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)对电化学性能进行研究。结果表明,样品均为单相尖晶石LiMn_2O_4结构,颗粒尺寸在50~100 nm。x=0.05样品具有高的Li~+扩散系数和低的电荷转移电阻,表现出优良的动力学性能和电化学性能。在1 C,x=0.05样品首次放电比容量为114.3m A×h×g~(-1),循环500次后的容量保持率为74.8%,即使在20和30 C的较高倍率,经过1 000次长循环后,仍分别保持51.9%和43.1%的容量保持率。适量的Ni-Cr共掺杂提高了LiMn2O4的晶体结构稳定性,改善了电化学性能。  相似文献   

15.
高镍三元正极材料由于其较高的理论比容量,引起了人们的广泛关注和研究。采用溶胶凝胶法制备高镍三元材料,以乙酸盐为原料,柠檬酸为螯合剂,制备LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(NCM811)材料,然后在此基础上添加三羟甲基氨基甲烷(Tris)配置的缓冲溶液来制备LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(NCM811-T)材料,再以铝盐代替锰盐制备LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)材料。通过对材料性能的测试发现更换铝盐的NCA材料放电比容量由原来NCM811材料的116 mAh/g提高为139 mAh/g。1 C下充放电循环50次,加入缓冲溶液后的NCM811-T材料与原NCM811材料相比容量保持率由原来的41.7%提升到96.1%。表明加入Tris缓冲溶液之后,材料的循环性能更好。  相似文献   

16.
分别用化学二氧化锰、电解二氧化锰、MnCO_3和Mn_3O_4为锰源,通过高温固相法合成尖晶石LiMn_2O_4。采用X射线衍射仪、扫描电子显微镜、恒电流充放电技术、交流阻抗及电位阶跃法,对合成的尖晶石LiMn_2O_4物相、形貌以及电化学性能进行检测分析。结果表明,由Mn_3O_4制备的LiMn_2O_4的X射线衍射峰强度最大且粒度较为均匀。在室温条件下,以0.2C倍率充放电循环20次,Mn_3O_4制备的LiMn_2O_4首次充放电比容量为128.3 mA·h/g,容量保持率为97.1%,优于另外三种锰源作为原料合成的尖晶石LiMn_2O_4。化学二氧化锰、电解二氧化锰、MnCO_3、Mn_3O_4合成尖晶石LiMn_2O_4电极材料的扩散系数DLi+分别为2.26×10(-11),4.54×10(-11),4.54×10(-11),0.83×10(-11),0.83×10(-11),8.25×10(-11),8.25×10(-11)cm(-11)cm2/s。  相似文献   

17.
以废旧NiCoMn三元材料为原材料,采用溶胶-凝胶自蔓延燃烧法制备出优良的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极三元复合材料,用XRD、SEM和充放电测试等方法对材料的结构、形貌和电化学性能进行了表征,并研究了煅烧温度的影响。结果表明,制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2不仅具有较好的层状结构,还具有多孔的特性;在2.75~4.30 V测试条件下,900℃合成的样品的首次放电容量为169.4 m Ah/g,库伦效率约为88.6%,经过30次循环后,0.2 C倍率下的容量保持率为95.5%,具有最高的比容量和较好的循环性能。  相似文献   

18.
通过分级共沉淀(分级进料)方法,结合高温热处理合成了金属元素(Ni,Mn)浓度从中心到表面呈梯度分布(中心富Ni,表面富Mn)的球形三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电感耦合等离子质谱仪(ICP-MS)等表征了所制备材料的成分、形貌和元素分布。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与传统的一级共沉淀方法相比,分级共沉淀所制备材料展现出更高的倍率性能(20 C放电比容量为104.1 m Ah·g~(-1))、循环保持率(0.5 C循环200次容量保持率为95.8%)和快速充放电性能(20 C/20 C放电比容量为85.4 m Ah·g~(-1))。这种分级进料制备技术可以有效提高共沉淀法制备锂离子电池三元正极材料的电化学性能。  相似文献   

19.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

20.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号