首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用高硫煤与煤矸石制备成复合还原剂还原分解磷石膏,研究了还原剂配方及粒度、C/S值(物料中C与S的摩尔比值)、反应温度对炉气二氧化硫浓度、磷石膏CaSO4分解率和脱硫率影响。结果表明:二氧化硫浓度可达16.02%,磷石膏中CaSO4分解率大于95%,磷石膏脱硫率大于90%,能为制酸提供合格的原料气和为制水泥提供合格的原料。  相似文献   

2.
复合还原剂还原分解磷石膏制取高浓度二氧化硫   总被引:1,自引:0,他引:1  
采用高硫煤与煤矸石制备成复合还原剂还原分解磷石膏,研究了还原剂配方及粒度、n(C)/n(S)(生料中碳与三氧化硫物质的量比)、反应温度对炉气二氧化硫体积分数、磷石膏硫酸钙分解率和脱硫率的影响.结果表明:复合还原剂配方、反应温度、还原剂粒度对二氧化硫的体积分数都有影响.采用高硫煤与煤矸石的质量比为2∶ 1的复合还原剂,在n(C)/n(S)为0.7、还原剂粒径为111~122 μm、温度大于1 000 ℃时,二氧化硫体积分数可达16.02%,与采用单一高硫煤作为还原剂相比,二氧化硫体积分数能提高1.46%.采用复合还原剂工艺有利于降低反应温度,提高二氧化硫体积分数和磷石膏分解率及脱硫率,可为煤矸石、磷石膏综合利用开发一条新途径.  相似文献   

3.
以过氧化氢为原料脱除硫酸尾气中的二氧化硫,研究过氧化氢浓度、反应温度、反应时间对脱硫率的影响,且对反应过程中过氧化氢的分解率进行了检测。实验结果表明:过氧化氢不足量时脱硫率随过氧化氢浓度的增加而增加,过氧化氢足量时过氧化氢浓度的改变对脱硫率影响不大;在实验条件下,过氧化氢分解率较低;反应温度对脱硫率影响不明显;在SO_2进气质量浓度为4 050 mg/m~3、进气量为0.25 m~3/h的条件下,最佳工艺条件为w(H_2O_2)0.25%、反应温度70℃、反应时间1 h,此条件下脱硫率为98%。  相似文献   

4.
《化学工程》2016,(4):18-21
采用钠-钙双碱法在撞击流气液反应器中脱除硫酸尾气中的SO_2,探讨了模拟硫酸尾气中SO_2质量浓度、吸收液Na OH质量分数、液气比和雾化压力等因素对脱硫效率的影响。研究表明:当模拟硫酸尾气中SO_2质量浓度越低、吸收液Na OH质量分数越高、液气比和雾化压力越高时,脱硫率越高。当模拟硫酸尾气中SO_2质量浓度在800—2 400 mg/m~3范围内时,优化得到的脱硫工艺条件为:吸收液Na OH质量分数为2.0%,液气比为0.34—0.36 L/m~3,对应雾化压力为1—1.2 MPa。在此条件下,脱硫率可高于97%,其脱硫后尾气SO_2质量浓度小于100 mg/m~3,远低于GB26132—2010规定的排放标准。  相似文献   

5.
采用室内模拟油田设备管道油气水三相混合集输体系的动态硫化氢脱除装置,评价了高效脱硫剂ETTS-1与醇胺溶剂(MDEA-MEA和MDEA)的应用工艺条件,分别考查了H2S初始质量浓度、脱硫温度、原油气油比值和CO2质量浓度对脱硫率的影响。结果表明,随着初始H2S质量浓度和脱硫温度升高,ETTS-1的脱硫率略有上升,醇胺溶剂的脱硫率逐渐下降。在H2S质量浓度为30 000 mg/L时,ETTS-1和醇胺溶剂脱硫率分别为97%和88%;在90℃时,ETTS-1和醇胺溶剂的脱硫率分别为97%和65%;气油比值对醇胺溶剂的影响远大于ETTS-1,气油比值15时,ETTS-1和醇胺溶剂的脱硫率分别为95%和78%;CO2体积分数对脱硫率影响大小依次为MDEA-MEA、MDEA和ETTS-1,在CO2体积分数为5%时,脱硫率依次为60%、66%和92%。  相似文献   

6.
对氨法烟气脱硫制亚硫酸氢铵过程进行数值模拟和工艺优化,考察了吸收温度、氨水质量分数和烟气SO_2质量浓度对脱硫效果的影响,优化了工艺参数。脱硫过程采用两级吸收塔,分析结果表明,第一吸收塔温度对亚硫酸氢铵质量浓度和SO_2总吸收率影响较小,对吸收塔尾气中SO_2和NH_3质量含量影响较大,第一吸收塔温度优选40~45℃;第二吸收塔温度对烟气脱硫效果影响很大,第二吸收塔温度优选25~30℃;氨水质量分数优选25%~33%;脱硫效率随烟气SO_2质量浓度的增加而降低,随着烟气SO_2质量浓度增大,亚硫酸氢铵和亚硫酸氨的浓度增大,亚硫酸氢铵与亚硫酸铵质量比减小,吸收塔排放尾气中SO_2质量含量增大。  相似文献   

7.
赵枫  吴璨  高哲  崔政伟 《化学工程》2019,47(4):11-16
湿法烟气脱硫技术是当今世界上应用最广泛的烟气脱硫手段,但是昂贵的基建和运行成本极大地限制了其进一步的发展。开发了一套喷射混合器组合螺旋切割强化气液传质的湿法烟气脱硫系统,考察了烟气SO_2质量浓度、脱硫剂质量分数、烟气流量以及脱硫剂循环流量对烟气脱硫效果的影响,并与喷射混合接触方式下的脱硫效果进行了对比实验研究。结果表明:当脱硫剂质量分数为15%,烟气SO_2质量浓度为3 000 mg/m~3,烟气流量为18 m~3/h,脱硫剂循环流量为250 mL/min的时候,系统脱硫效果最佳,出口烟气SO_2质量浓度为0 mg/m~3;静态螺旋切割气液接触方式下,系统脱硫率相较于单独喷射混合提高了7.64%。采用螺旋切割装置强化烟气脱硫,能够显著提高系统的烟气脱硫效率,可达到超净排放,并能实现湿法烟气脱硫系统的高效化、小型化。  相似文献   

8.
介绍了新颖的撞击流气-液反应器吸收装置的基本结构参数和工艺流程,及在撞击流气-液反应器中采用钠-钙双碱法脱除硫酸尾气中SO_2工艺的工业应用。在撞击流气-液反应器导气管内气速(即撞击速度)为15—18 m/s的条件下,测定了液气比、脱硫介质浓度对脱硫效率的影响及脱硫系统阻力。由结果可知,相对传统脱硫装置,撞击流反应器脱除硫酸尾气中SO_2的工艺具有如下特点:系统阻力小、能耗低、设备投资小,脱硫效率高、运行稳定、操作弹性较大。在液气比为0.3—0.4 L/m~3,吸收液质量分数为1%—2%的条件下,脱除SO_2质量浓度为1 500—2 000 mg/m~3的硫酸尾气,其脱硫效率≥96.0%,SO_2排放质量浓度≤100 mg/m~3。  相似文献   

9.
在振动流化床中进行了磷石膏分解与焦炭燃烧反应耦合研究,考察了反应温度、碳硫摩尔比、床层高度和反应时间对磷石膏分解率、脱硫率以及产生气体SO2质量分数的影响。结果发现,在能量耦合条件下磷石膏的分解率、脱硫率和SO2质量分数都得到了显著的提高;当床层高度为200mm、碳硫摩尔比为0.8、空气流量为145mL/min和反应时间为1h时,磷石膏的分解率达到80.94%,脱硫率达到75.96%,SO2平均质量分数达到12.56%。  相似文献   

10.
采用单因素实验分析法探讨了氨法脱硫中氨逃逸的控制问题,在烟气温度为90℃,吸收液质量分数为1%,液气比L/G为5的工艺条件下,尾气中氨逃逸量可以得到有效的抑制,烟气出口NH_3质量浓度为19 mg/m~3,同时脱硫效率高达95%以上。详细比较不同Co SO_4催化剂浓度下亚硫酸铵的氧化效果,并采用正交实验分析后得出在Co SO_4催化作用下,(NH_4)_2SO_3的最佳氧化工艺参数(NH_4)_2SO_3初始浓度为1.35 mol/L,反应温度为50℃,p H为4。  相似文献   

11.
介绍了氨酸法脱硫、2段吸收脱硫工艺中吸收、吸收液再生、分解和中和4个步骤其中吸收剂为亚硫酸铵-亚硫酸氢铵溶液,亚硫酸铵为主要吸收剂,对SO_2有很好的吸收能力。分析了母液碱度、母液中SO_2与NH_4物质的量比以及PH值是影响吸收率的指标。要求一段吸收液碱度为1.25~2mol/L,亚硫酸铵质量浓度为30~150 g/L,母液密度1.2~1.25 g/cm~3;二段吸收液碱度为0.75~1.25mol/L,母液密度1.0~1.15 g/cm~3;SO_2与NH_4物质的量比大于0.7;pH值不大于6。经氨酸法脱硫系统处理后,尾气排放SO_2质量浓度平均约200 mg/m~3,SO_2吸收率超过95%。  相似文献   

12.
研究了硫铁矿分解硫酸亚铁的固-固反应,通过HSC热力学软件模拟和实际实验研究考察了含二氧化硫气氛和含氧气氛对硫铁矿分解硫酸亚铁的影响。热力学研究结果表明,二氧化硫对反应无明显影响,氧会增加硫酸亚铁的完全分解温度。实验研究表明,二氧化硫会降低原料脱硫率,但进一步增大二氧化硫浓度不会进一步影响原料脱硫率,这与热力学研究结果有差异,是因为HSC软件未考虑反应平衡;氧气浓度越高,原料脱硫率越低,主要因为氧气消耗掉部分还原剂硫铁矿。  相似文献   

13.
磷石膏CFB预分解系统的热力学分析   总被引:1,自引:0,他引:1  
对磷石膏循环流化床(CFB)预分解系统的理想模型进行了全面的热力学分析。结果表明,系统在理想的运行条件下能达到的理论热耗水平为5400~6000kJ/kg熟料,其中分解炉热耗占90%以上,炉气SO_2理论浓度约12%,难以达到德国鲁奇公司所预计的15%水平。与磷石膏中空窑和预热器窑比较,气体SO_2理论浓度分别提高2%~3%和1%~2%。达到这一理想水平的主要条件为:(1)窑列、炉列均采用五级旋风预热器,热效率达到普通新型干法窑单列预热器的水平。(2)CFB分解炉物料一次通过的分解率为90%,高温旋风分离器分离效率为90%,循环倍率为2,使出炉物料分解率达98%。(3)分解炉脱硫率达95%。  相似文献   

14.
提出了一种应用钙基脱硫剂脱除冶炼烟道气中高浓度SO_2并回收硫单质的方法。通过热力学模拟多种硫化物与SO_2之间的反应,筛选得出硫化钙(Ca S)适合作为化学链脱硫技术的脱硫剂,它在400~650℃范围内可将SO_2还原为单质硫,生成的固相产物为Ca SO_4而非Ca O。通过固定床反应器内的脱硫实验,发现温度对脱硫率和硫单质回收率影响较大。在400~650℃范围内温度越高,脱硫率和硫单质回收率越大;当温度高于600℃时,脱硫率和硫单质回收率基本相等。提高空速,则会降低脱硫率和硫单质回收率,但两者的差值随空速增大逐渐减小。当烟气中SO2浓度小于1%时,脱硫率维持在99.8%基本不变;SO_2浓度升至3.45%后,平均脱硫率急剧下降至92.1%;SO_2浓度越高,平均脱硫率越低。硫单质回收率随SO_2浓度增大存在一最佳范围。在脱硫反应后期,粒径较大的脱硫剂颗粒脱硫性能较低。SEM照片表明了脱硫剂颗粒随反应温度的升高团聚现象更为明显,XRD表征证明了反应中SO_2气体被还原为升华硫颗粒。  相似文献   

15.
通过对影响液相吸收催化SO_2过程中的操作条件进行研究,设计正交实验来考察温度、MnSO_4浓度、硫酸浓度以及空速对催化氧化SO_2的影响。分析实验结果表明,4种因素的影响大小依次为:硫酸质量分数、MnSO_4质量浓度、温度、气速;液相催化氧化SO_2的最优条件为:温度为50℃,MnSO_4的浓度为0.05mol/L,硫酸的质量分数为12.5%,气速为150mL/min。  相似文献   

16.
针对磷石膏资源化利用课题,开展了硫磺低温分解磷石膏制高浓度SO_2技术、氧化钙残渣的高值化利用技术及磷石膏制酸过程的系统集成及工程实施关键技术研究。硫磺分解磷石膏过程的动力学试验研究结果表明:一段反应温度为650℃,反应停留时间为1 h,反应产物可达到二段物料配比;二段反应温度为1 100℃,磷石膏分解率大于98%,系统脱硫率大于96%。氧化钙残渣配以铝矾土、磷石膏在1 250℃/60 min下可烧制成高品质的硫铝酸盐水泥熟料;采用氯化铵浸取脱硫钙渣碳酸化制备高纯度碳酸钙,残渣中钙浸取率为85.62%,硅脱除率达到95.30%,所得轻质碳酸钙产品纯度达98.90%,达到涂料用优等品指标要求。建立万吨级硫磺低温分解磷石膏制硫酸示范装置,实现了磷石膏转化率99%、分解温度为1 050℃、窑气φ(SO_2)高达12.2%的工艺指标。  相似文献   

17.
采用流化床反应器,研究了高含水抗生素菌渣直接燃烧的NO_x、SO_2排放特性。结果表明,增加过量空气系数,NO_x排放浓度升高,SO_2排放浓度降低;升高燃烧温度,NO_x及SO_2排放浓度均升高;随着燃料含水率的增加,NO_x及SO_2排放浓度均呈现先降低后升高的趋势。空气分级燃烧能有效降低NO_x排放,二次风率增加,NO_x排放浓度显著降低;当二次风率为3/7时,NO_x排放浓度较传统燃烧降低50%。添加CaCO_3进行炉内脱硫,实验结果显示:随钙硫摩尔比(Ca/S)增加,SO_2排放浓度下降,当Ca/S=3时,SO_2排放浓度降低到25 mg·m~(-3)以下,脱硫效率超过99%。  相似文献   

18.
SO_2和NO作为燃煤电厂排放烟气中的主要污染物,对环境产生了巨大危害。为有效进行燃煤烟气中的SO_2和NO的一体化脱除,文中通过对传统鼓泡床湿法脱硫脱硝装置进行改善,以ClO_2/尿素为新型复合吸收剂进行了湿法燃煤烟气脱硫脱硝一体化研究。实验结果表明:ClO_2的添加可以显著改善尿素吸收剂的脱硝能力,并且对SO_2的脱除还具有一定的促进作用。当n(ClO_2)/n(NO)=0.75,尿素质量分数为10%时,SO_2的脱除效率为100%,NO的脱除效率稳定在91%。实验中探究了ClO_2添加量,反应温度,吸收剂初始pH值,SO_2质量浓度和NO质量浓度对脱硫脱硝效率的影响,提出ClO_2/尿素复合剂脱硫脱硝的反应机理,表明新型复合吸收剂湿法脱硫脱硝的具有良好的应用前景。  相似文献   

19.
在振动流化床中对磷石膏分解与甲烷催化燃烧热量耦合强化磷石膏分解过程进行了研究。考察了反应温度、碳硫摩尔比、甲烷浓度、物料高径比、气体流量和反应时间对磷石膏分解率、脱硫率以及产生气体SO2浓度的影响。实验表明,强化磷石膏分解反应适宜的耦合条件为:反应温度1 030℃,气体流量140 mL/min,φ(CH4)4%,碳硫摩尔比1.0,物料高径比4.8,反应时间60 min,磷石膏分解率和脱硫率分别达到95.42%和85.62%,SO2体积分数达到17.86%。  相似文献   

20.
祁贵生  刘有智  王焕  焦纬洲 《化工进展》2014,33(4):1045-1049,1066
以H2S、CO2和空气模拟焦炉煤气,以超重机为脱硫设备,采用湿式氧化法脱除焦炉煤气中的H2S,研究了超重力因子、液气比、气液接触时间、原料气中H2S含量等工艺参数对脱硫率的影响规律,结果表明:脱硫效率随着超重力因子、液气比、气液接触时间和原料气中H2S浓度的增大而增大。确定了适宜的工艺参数,在气液接触时间为0.15 s的条件下,获得了98%以上的脱硫效率,CO2的脱除率稳定在1.0%左右,超重力法脱硫技术实现了高效、快速脱硫。在生产现场建成了处理气量为10000 m3/h的工程化超重力湿式氧化法脱硫装置,运行结果显示:超重力湿式氧化法脱除焦炉煤气中H2S技术具有脱硫效率高、气液接触时间短、操作弹性大、设备体积小等优点,H2S脱除率可稳定在90%以上,应用前景广阔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号