首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen J  Zhuo S  Luo T  Jiang X  Zhao J 《Scanning》2006,28(6):319-326
The spectral properties of one-photon, two-photon excited autofluorescence and second harmonic generation (SHG) from ex vivo human skin induced by a femtosecond (fs) laser and three visible lasers in backscattering geometry are systematically investigated. Our experimental results indicate that peak position of autofluorescence spectra from the dermis and epidermis shift toward long wavelengths, and the fluorescent intensity decreases when the excitation wavelength increases due to an effect of the excitation wavelength on autofluorescence signals. However, the intensity of the SHG signal in collagen has the maximal value of 800 nm excitation wavelength. This may be the result that the energy of the SHG signal is in resonance with an electronic absorption band. The two-photon excited autofluorescence and SHG intensity all obey a quadratical dependence on the excitation power. Compared with the two-photon excited fluorescence and SHG, the one-photon excited fluorescence in the dermis and epidermis exhibits different spectral characteristics. The investigation of the spectral characteristics of autofluorescence and SHG from ex vivo human skin can provide new insights into morphologic structures and biochemical components of tissues, which are vital for improving the application of laser-induced autofluorescence and SHG spectroscopy technique for noninvasive in vivo tissue diagnostics.  相似文献   

2.
The ability to visualize cell motility occurring deep in the context of opaque tissues will allow many currently intractable issues in developmental biology and organogenesis to be addressed. In this study, we compare two-photon excitation with laser scanning confocal and conventional digital deconvolution fluorescence microscopy, using the same optical configuration, for their ability to resolve cell shape deep in Xenopus gastrula and neurula tissues. The two-photon microscope offers better depth penetration and less autofluorescence compared to confocal and conventional deconvolution imaging. Both two-photon excitation and confocal microscopy also provide improved rejection of "out-of-focus" noise and better lateral and axial resolution than conventional digital deconvolution microscopy. Deep Xenopus cells are best resolved by applying the digital deconvolution method on the two-photon images. We have also found that the two-photon has better depth penetration without any degradation in the image quality of interior sections compared to the other two techniques. Also, we have demonstrated that the quality of the image changes at different depths for various excitation powers.  相似文献   

3.
We present combined epi-coherent anti-Stokes Raman scattering (CARS) and multiphoton imaging with both chemical discrimination and subcellular resolution on human skin in vivo. The combination of both image modalities enables label-free imaging of the autofluorescence of endogenous fluorophores by two-photon excited fluorescence, as well as imaging of the distribution of intercellular lipids, topically applied substances and water by CARS. As an example for medical imaging, we investigated healthy and psoriasis-affected human skin with both image modalities in vivo and found indications for different lipid distributions on the cellular level.  相似文献   

4.
When conducting optical imaging experiments, in vivo, the signal to noise ratio and effective spatial and temporal resolution is fundamentally limited by physiological motion of the tissue. A three-dimensional (3D) motion tracking scheme, using a multiphoton excitation microscope with a resonant galvanometer, (512 × 512 pixels at 33 frames s(-1)) is described to overcome physiological motion, in vivo. The use of commercially available graphical processing units permitted the rapid 3D cross-correlation of sequential volumes to detect displacements and adjust tissue position to track motions in near real-time. Motion phantom tests maintained micron resolution with displacement velocities of up to 200 μm min(-1), well within the drift observed in many biological tissues under physiologically relevant conditions. In vivo experiments on mouse skeletal muscle using the capillary vasculature with luminal dye as a displacement reference revealed an effective and robust method of tracking tissue motion to enable (1) signal averaging over time without compromising resolution, and (2) tracking of cellular regions during a physiological perturbation.  相似文献   

5.
In this paper we report stimulated emission depletion (STED) and two-photon excitation (2PE) fluorescence microscopy with continuous wave (CW) laser beam using a new generation laser scanning confocal microscope equipped for STED-CW (TCS STED-CW, Leica Microsystems, Mannheim, Germany). We show the possibility to achieve CW-2PE with the very same beam used for STED-CW. This feature extends the performance of the microscope allowing multimodal imaging (CW-2PE, STED-CW, confocal).  相似文献   

6.
朱朝晖 《现代仪器》2007,13(4):6-8,5
干细胞具有分化、再生能力,通过体外扩增和体内移植,可以治疗各种组织坏损和退化性疾病(如心脑血管疾病、脑脊髓外伤和糖尿病等),具有极大的应用前景,是目前国际、国内的研究热点。利用核素显像、磁共振成像和光成像等分子影像技术,通过体外直接标记、报告基因或功能显示等追踪策略,可以显示干细胞在活体内的分布和变化,明确其最终归宿和产生的功能。合理选择这些分子影像技术和追踪策略,或通过互补结合,将有助于阐明干细胞在活体内的作用机制和相关的影响因素,指导临床干细胞治疗抉择和疗效评估。  相似文献   

7.
Wu X  Zhuo S  Chen J  Liu N 《Scanning》2011,33(6):463-467
Changes of dermal collagen are characteristic for chronic lymphedema. To evaluate these changes, a real-time imaging based on two-photon excited fluorescence and second-harmonic generation was developed for investigating collagen of lymphedematous mouse and rat tail skin in vivo. Our findings showed that the technique could image the morphological changes and distribution of collagen in lymphedematous mouse and rat tail skin in vivo. More importantly, it may allow visualization of dynamic collagen alteration during the progression of lymphedema. Our findings demonstrated that multiphoton microscopy may have potential in a clinical setting as an in vivo diagnostic and monitoring system for therapy in lymphology.  相似文献   

8.
《仪器科学与技术》2013,41(1):11-16
Fourier transform imaging spectroscopy was combined with fluorescence microscopy and a cooled CCD detector for examination of human oral tissues. Oral tissue fragments, obtained from patients, were irradiated at 365 nm by a mercury lamp through the microscope objectives. Microscope images were transferred to an imaging Fourier transform spectrometer and to a CCD camera for simultaneous recording of the fluorescence spectra at each image pixel. Detailed information was observed at a microscopic resolution. Oral tissue fragments were also treated with aluminum phthalocyanine tetrasulfonatre (AlPcS4) prior to irradiation and imaging. Since the latter is preferentially retained in proliferating vascular tissue such as oral tumors, its effect upon the fluorescence imaging is of practical importance. AlPcS4 is highly soluble in biological solutions and has a strong absorbance at our excitation wavelength and a strong emission peak at λ = 680 nm; therefore, it was found suitable for detection of malignant tumors by this method. It was found that the proposed spectral imaging method, when combined with fluorescence labeling, allows for direct, in vivo, medical examination of oral tissues with detailed spatial resolution.  相似文献   

9.
Multiphoton excitation laser scanning microscopy, relying on the simultaneous absorption of two or more photons by a molecule, is one of the most exciting recent developments in biomedical imaging. Thanks to its superior imaging capability of deeper tissue penetration and efficient light detection, this system becomes more and more an inspiring tool for intravital bulk tissue imaging. Two‐photon excitation microscopy including 2‐photon fluorescence and second harmonic generated signal microscopy is the most common multiphoton microscopic application. In the present review we take diverse ocular tissues as intravital samples to demonstrate the advantages of this approach. Experiments with registration of intracellular 2‐photon fluorescence and extracellular collagen second harmonic generated signal microscopy in native ocular tissues are focused. Data show that the in‐tandem combination of 2‐photon fluorescence and second harmonic generated signal microscopy as two‐modality microscopy allows for in situ co‐localization imaging of various microstructural components in the whole‐mount deep intravital tissues. New applications and recent developments of this high technology in clinical studies such as 2‐photon‐controlled drug release, in vivo drug screening and administration in skin and kidney, as well as its uses in tumourous tissues such as melanoma and glioma, in diseased lung, brain and heart are additionally reviewed. Intrinsic emission two‐modal 2‐photon microscopy/tomography, acting as an efficient and sensitive non‐injurious imaging approach featured by high contrast and subcellular spatial resolution, has been proved to be a promising tool for intravital deep tissue imaging and clinical studies. Given the level of its performance, we believe that the non‐linear optical imaging technique has tremendous potentials to find more applications in biomedical fundamental and clinical research in the near future.  相似文献   

10.
We compare conventional infrared laser based three-photon excitation with a visible laser based two-photon excitation scheme for imaging the ultraviolet fluorophore serotonin in solution and in live cells. To obtain a signal level of 1000 photons per second per mM serotonin solution, we need a back aperture power of 5 mW at 550 nm (for two-photon excitation) and 33 mW at 740 nm (for three-photon excitation). The detectivity of serotonin (defined as the concentration of serotonin that yields a signal equivalent to three times the standard deviation of the signal obtained from the buffer alone) is 12 microM for two-photon, and 220 microM for three-photon excitation. Surprisingly, for live cell imaging of vesicular serotonin in serotonergic cells, three-photon excitation appears to provide better image contrast than two-photon excitation. The origin of this is traced to the concentration-dependent shift of the serotonin emission spectrum.  相似文献   

11.
Basic and clinical evidence that hyperthermia with radiation therapy or selected chemotherapy could significantly improve therapeutic ratios has attracted considerable interest. A variety of heating equipment and techniques have been used in many early clinical studies, with encouraging results: 60-70% with complete tumor regression without concomitant increase of normal-tissue toxicity. New generations of hyperthermia systems being developed should improve results significantly. However, since tumor response is directly related to hyperthermic temperature and the uniformity of the temperature distribution within target tissues, adequate characterization of the temperature profile within tumors as well as normal tissues is of primary importance. Clinical experience with microwave hyperthermia treatment combined with radiotherapy has been encouraging (complete regression response rate of 68% in 63 tumors in 50 patients) at Duke and VA Medical Centers, as have the results obtained (complete regression in 21 of 40 tumors treated in one clinic; 13 of 20 tumors treated in another clinic) with an 8-MHz RF capacitive hyperthermia system being evaluated in Japan.  相似文献   

12.
A major problem in microscopic imaging of ex vivo tissue sections stained with fluorescent agents (e.g. antibodies, peptides) is the confounding presence of background tissue autofluorescence. Autofluorescence limits (1) the accuracy of differentiating background signals from single and multiple fluorescence labels and (2) reliable quantification of fluorescent signals. Advanced techniques such as hyperspectral imaging and spectral unmixing can be applied to essentially remove this autofluorescent signal contribution, and this work attempts to quantify the effectiveness of autofluorescence spectral unmixing in a tumour xenograft model. Whole-specimen single-channel fluorescence images were acquired using excitation wavelengths of 488 nm (producing high autofluorescence) and 568 nm (producing negligible autofluorescence). These single-channel data sets are quantified against hyperspectral images acquired at 488 nm using a prototype whole-slide hyperspectral fluorescence scanner developed in our facility. The development and further refinement of this instrument will improve the quantification of weak fluorescent signals in fluorescence microscopy studies of ex vivo tissues in both preclinical and clinical applications.  相似文献   

13.
Excitation saturation can dramatically alter the effective imaging point spread function (PSF) in two-photon fluorescence microscopy. The saturation-modified PSF can have important implications for resolution in fluorescence imaging as saturation leads to both an increased fluorescence observation volume and an altered spatial profile for the PSF. We introduce here a computational approach to accurately quantify molecular excitation profiles that represent the modified imaging PSF in two-photon microscopy under the influence of excitation saturation. An analytical model that accounts for pulsed laser excitation is developed to calculate the influence of saturation at any location within the excitation laser profile. The overall saturation modified molecular excitation profiles are then evaluated numerically. Our results demonstrate that saturation can play an important role in two-photon fluorescence microscopy even with relatively modest excitation levels.  相似文献   

14.
Jiang X  Zhong J  Liu Y  Yu H  Zhuo S  Chen J 《Scanning》2011,33(1):53-56
Multiphoton microscopic imaging of collagen plays an important role in noninvasive diagnoses of human tissue. In this study, two-photon fluorescence and second-harmonic generation (SHG) imaging of collagen in human skin dermis and submucosa of colon and stomach tissues were investigated based on multiphoton microscopy (MPM). Our results show that multiphoton microscopic image of collagen bundles exhibits apparently different pattern in human tissues. The collagen bundles can simultaneously reveal its SHG and two-photon excited fluorescence images in the submucosa of colon and stomach, whereas it solely emit SHG signal in skin dermis. The intensity spectral information from tissues further demonstrated the above results. This indicates that collagen bundles have completely different space arrangement in these tissues. Our experimental results bring more detailed information of collagen for the application of MPM in human noninvasive imaging.  相似文献   

15.
A variety of high resolution optical microscopy techniques have been developed in recent years for basic and clinical studies of biological systems. We demonstrate a trimodal microscope combining optical coherence microscopy (OCM) with two forms of nonlinear microscopy, namely two-photon excited fluorescence (2PF) and second harmonic generation (SHG), for imaging turbid media. OCM combines the advantages of confocal detection and coherence gating for structural imaging in highly scattering tissues. Nonlinear microscopy enables the detection of biochemical species, such as elastin, NAD(P)H, and collagen. While 2PF arises from nonlinear excitation of fluorescent species, SHG is a form of nonlinear scattering observed in materials that lack a center of inversion symmetry, such as type I collagen. Characterization of the microscope showed nearly diffraction-limited spatial resolution in all modalities. Images were obtained in fish scales and excised human skin samples. The primary endogenous sources of contrast in the dermis were due to elastin autofluorescence and collagen SHG. Multimodal microscopy allows the simultaneous visualization of structural and functional information of biological systems.  相似文献   

16.
Mechanical boundary conditions are well known to influence the regeneration of bone and mechanobiology is the study of how mechanical or physical stimuli regulate biological processes. In vivo models have been applied over many years to investigate the effects of mechanics on bone healing. Early models have focused on the influence of mechanical stability on healing outcome, with an interest in parameters such as the magnitude of interfragmentary movement, the rate and timing of application of micromotion and the number of loading cycles. As measurement techniques have been refined, there has been a shift in orders of magnitude from investigations targeted at the organ level to those targeted at the tissue level and beyond. An understanding of how mechanics influences tissue differentiation during repair and regeneration crucially requires spatial and temporal knowledge of both the local mechanical environment in the healing tissue and a characterization of the tissues formed over the course of regeneration. Owing to limitations in the techniques available to measure the local mechanical conditions during repair directly, simulation approaches, such as the finite element method, are an integral part of the mechanobiologist's toolkit, while histology remains the gold standard in the characterization of the tissue formed. However, with rapid advances occurring in imaging modalities and methods to characterize tissue properties, new opportunities exist to better understand the role of mechanics in the biology of bone regeneration. Combined with developments in molecular biology, mechanobiology has the potential to offer exciting, new regenerative treatments for bone healing.  相似文献   

17.
The availability of multi-photon intravital microscopy has recently allowed researchers to start to visualise the dynamic behaviour of cancer cells in vivo. This imaging has revealed that many cancer cells ranging from carcinoma to melanoma move in an amoeboid manner in order to invade surrounding tissue and escape from the primary tumour. This mode on cell motility is extremely rapid and does not require the activity of proteases to degrade the extra-cellular matrix (ECM). This review details the techniques that are available to study cell motility in vivo and discusses the current knowledge about the mechanisms of amoeboid cell motility.  相似文献   

18.
Two-photon medical imaging has found its way into dermatology as an excellent method for noninvasive skin cancer detection without need of contrast agents as well as for in situ drug screening of topically-applied cosmetical and pharmaceutical components. There is an increasing demand to apply the multiphoton technology also for deep-tissue skin imaging as well as for intracorporal imaging. We report on the first clinical use of multiphoton endoscopes, in particular of a miniaturized rigid two-photon GRIN lens endoscope. The microendoscope was attached to the multiphoton tomograph DermaInspect and employed to detect the extracellular matrix proteins collagen and elastin in the human dermis of volunteers and patients with ulcera by in vivo second harmonic generation and in vivo two-photon autofluorescence.  相似文献   

19.
The use of noninvasive imaging techniques to evaluate different types of skin lesions is increasing popular. In vivo confocal laser scanning microscopy (CLSM) is a new method for high resolution non‐invasive imaging of intact skin in situ and in vivo. Although many studies have investigated melanin‐containing cells in lesions by in vivo CLSM, few studies have systematically characterized melanin‐containing cells based on their morphology, size, arrangement, density, borders, and brightness. In this study, the characteristics of melanin‐containing cells were further investigated by in vivo CLSM. A total of 130 lesions, including common nevi, giant congenital pigmented nevi, vitiligo, melasma, melanoma, and chronic eczema, were imaged by in vivo CLSM. This research helps dermatologists understand the characteristics of melanin‐containing cells and facilitate the clinical application of melanin‐containing cells in the investigation of dermatological disease. In summary, melanin‐containing cells include keratinocytes, melanocytes, macrophages, and melanocytic skin tumor cells. Our study presents the CLSM characteristics of melanin‐containing cells to potentially facilitate in vivo diagnosis based on shape, size, arrangement, density, borders, and brightness. Microsc. Res. Tech. 78:1121–1127, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
A scanning microscope utilizing two-photon excitation in combination with fluorescence lifetime contrast is presented. The microscope makes use of a tunable femtosecond titanium:sapphire laser enabling the two-photon excitation of a broad range of fluorescent molecules, including UV probes. Importantly, the penetration depth of the two-photon exciting (infra)red light is substantially greater than for the corresponding single-photon wavelength while photobleaching is significantly reduced. The time structure of the Ti:Sa laser can be employed in a straightforward way for the realization of fluorescence lifetime imaging. The fluorescence lifetime is sensitive to the local environment of the fluorescent molecule. This behaviour can be used for example to quantify concentrations of ions, such as pH and Ca2+, or pO2 and pCO2. In the set-up presented here the fluorescence lifetime imaging is accomplished by time-gated single photon counting. The performance and optical properties of the microscope are investigated by a number of test measurements on fluorescent test beads. Point-spread functions calculated from measurements on 230-nm beads using an iterative restoration procedure compare well with theoretical expectations. Lifetime imaging experiments on a test target containing two different types of test bead in a fluorescent buffer all with different lifetimes (2.15 ns, 2.56 ns and 3.34 ns) show excellent quantitative agreement with reference values obtained from time correlated single photon counting measurements. Moreover, the standard deviation in the results can be wholly ascribed to the photon statistics. Measurements of acridine orange stained biofilms are presented as an example of the potential of two-photon excitation combined with fluorescence lifetime contrast. Fluorescence lifetime and intensity images were recorded over the whole sample depth of 100 μm. Fluorescence intensity imaging is seriously hampered by the rapid decrease of the fluorescence signal as a function of the depth into the sample. Fluorescence lifetime imaging on the other hand is not affected by the decrease of the fluorescence intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号