首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In wind farm operation, the performance and loads of downstream turbines are heavily influenced by the wake of the upstream turbines. Furthermore, the actual wake is more challenging due to the dynamic phenomenon of wake meandering, i.e. the turbine wake often demonstrates dynamic shift over time. To deal with the time-varying characteristics of wake meandering, a multiple model predictive control (MMPC) scheme is applied to the individual pitch control (IPC) based load reduction. The coherence function in the spectral method is used to generate the stochastic wind profile including wake meandering at upstream turbine, and a simplified wake meandering model is developed to emulate the trajectory of the wake center at downstream turbine. The Larsen wake model and Gaussian distribution of wake deficit are applied for composing wind profiles across the rotor of downstream turbines. A set of MMPC controllers are designed based on different linearized state-space models, and are applied in a smooth switching manner. Simulation results show significant reduction in the variation of both rotor speed and blade-root flapwise bending moment using the MMPC based IPC by including the wake meandering, as compared to a benchmark PI controller designed by NREL.  相似文献   

2.
Reliable load frequency control (LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control (DMPC) based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints (GRCs), load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints.   相似文献   

3.
This paper proposes ${\rm H}_\infty$ controller design for platform position transfer and regulation of floating offshore wind turbines. The platform movability of floating wind turbines can be utilized in mitigating the wake effect in the wind farm, thereby maximizing the wind farm''s total power capture and efficiency. The controller is designed so that aerodynamic force is adjusted to meet the three objectives simultaneously, that is, 1) to generate the desired electrical power level, 2) to achieve the desired platform position, and 3) to suppress the platform oscillation. To acquire sufficient aerodynamic force to move the heavy platform, the pitch-to-stall blade pitching strategy is taken instead of the commonly-used pitch-to-feather strategy. The desired power level is attained by the standard constant-power strategy for the generator torque, while ${\rm H}_\infty$ state-feedback control of blade pitch and nacelle yaw angles is adopted for the position regulation and platform oscillation suppression. Weighting constants for the ${\rm H}_\infty$ controller design are adjusted to take the trade-off between the position regulation accuracy and the platform motion reduction. To demonstrate the efficiency of the proposed controller, a virtual 5-MW semi-submersible wind turbine is considered. Simulation results show that the designed ${\rm H}_\infty$ controller successfully accomplishes the platform position transfer and regulation as well as the platform oscillation reduction against wind and wave disturbances, and that it outperforms a previously-proposed linear quadratic controller with an integrator.  相似文献   

4.
This paper investigates the problem of model predictive control for a class of networked control systems. Both sensor‐to‐controller and controller‐to‐actuator delays are considered and described by Markovian chains. The resulting closed‐loop systems are written as jump linear systems with two modes. The control scheme is characterized as a constrained delay‐dependent optimization problem of the worst‐case quadratic cost over an infinite horizon at each sampling instant. A linear matrix inequality approach for the controller synthesis is developed. It is shown that the proposed state feedback model predictive controller guarantees the stochastic stability of the closed‐loop system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Wind energy has been widely applied in power generation to alleviate climate problems. The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream. Wind farm layout optimization (WFLO) aims to reduce the wake effect for maximizing the power outputs of the wind farm. Nevertheless, the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm, which severely affect power conversion efficiency. Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios. Thus, a chaotic local search-based genetic learning particle swarm optimizer (CGPSO) is proposed to optimize large-scale WFLO problems. CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms. The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance, stability, and robustness. To be specific, a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local. It improves the solution quality. The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.   相似文献   

6.
This paper presents a new nonlinear polynomial controller for wind turbines that assures stability and maximizes the energy produced while imposing a bound in the generated power derivative in normal operation (guarantees a smooth operation against wind turbulence). The proposed controller structure also allows eventually producing a transient power increase to provide grid support, in response to a demand from a frequency controller. The controller design uses new optimization over polynomials techniques, leading to a tractable semidefinite programming problem. The ability of the wind turbine to increase its power under partial load operation has been analysed. The aforementioned optimization techniques have allowed quantifying the maximum transient overproduction that can be demanded to the wind turbine without violating minimum speed constraints (that could lead to unstable behaviour), as well as the total generated energy loss. The ability to evaluate this shortfall has permitted the development of an optimization procedure in which wind farm overproduction requirements are divided into individual turbines, assuring that the total energy loss in the wind farm is minimum, while complying with the maximum demanded power constraints. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
针对具有结构不确定性的时滞系统,设计了闭环鲁棒预测控制算法.该控制算法基于控制不变集方法,通过采用双模控制和闭环控制策略,增加了控制设计的自由度,进而扩大了系统的初始可行域并能获得较优的控制性能.仿真结果验证了该方法的有效性.  相似文献   

8.
ABSTRACT

Wind energy has emerged as a strong alternative to fossil fuels for power generation. To generate this energy, wind turbines are placed in a wind farm. The extraction of maximum energy from these wind farms requires optimal placement of wind turbines. Due to complex nature of micrositing of wind turbines, the wind farm layout design problem is considered a complex optimization problem. In the recent past, various techniques and algorithms have been developed for optimization of energy output from wind farms. The present study proposes an optimization approach based on the cuckoo search (CS) algorithm, which is relatively a recent technique. A variant of CS is also proposed that incorporates a heuristic-based seed solution for better performance. The proposed CS algorithms are compared with genetic and particle swarm optimization algorithms which have been extensively applied to wind farm layout design. Empirical results indicate that the proposed CS algorithms outperformed the genetic and particle swarm optimization algorithms for the given test scenarios in terms of yearly power output and efficiency.  相似文献   

9.
In this paper, a prediction model is proposed for wind farm power forecasting by combining the wavelet transform, chaotic time series and GM(1, 1) method. The wavelet transform is used to decompose wind farm power into several detail parts associated with high frequencies and an approximate part associated with low frequencies. The characteristic of each high frequencies signal is identified, if it is chaotic time series then use weighted one-rank local-region method to predict it. If not, use GM(1, 1) model to predict it. And the GM(1, 1) model is also used to predict the approximate part of the low frequencies. In the end, the final forecasted result for wind farm power is obtained by summing the predicted results of all extracted high frequencies and the approximate part. According to the predicted results, the proposed method can improve the prediction accuracy of the wind farm power.  相似文献   

10.
This paper studies adaptive model predictive control (AMPC) of systems with time‐varying and potentially state‐dependent uncertainties. We propose an estimation and prediction architecture within the min‐max MPC framework. An adaptive estimator is presented to estimate the set‐valued measures of the uncertainty using piecewise constant adaptive law, which can be arbitrarily accurate if the sampling period in adaptation is small enough. Based on such measures, a prediction scheme is provided that predicts the time‐varying feasible set of the uncertainty over the prediction horizon. We show that if the uncertainty and its first derivatives are locally Lipschitz, the stability of the system with AMPC can always be guaranteed under the standard assumptions for traditional min‐max MPC approaches, while the AMPC algorithm enhances the control performance by efficiently reducing the size of the feasible set of the uncertainty in min‐max MPC setting. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.

针对复杂关联系统中分散控制方法无法有效解决子系统间的耦合和干扰问题, 提出一种基于扩张状态观测器的分散模型预测控制算法. 首先将复杂关联系统分解为多个状态维数较低、控制变量较少的子系统, 并为每个子系统设计本地预测控制器; 然后, 采用扩张状态观测器对子系统的耦合项以及干扰项进行估计, 进而利用估计值对子系统进行前馈补偿, 从而降低复杂关联系统的计算复杂度, 提高系统的稳定性和抗干扰能力; 最后, 利用液位控制系统验证了所提出算法的有效性.

  相似文献   

12.
A boiler‐turbine unit is a primary module for coal‐fired power plants, and an effective automatic control system is needed for the boiler‐turbine unit to track the load changes with the drum water level kept within an acceptable range. The aim of this paper is to develop a nonlinear tracking controller for the Bell‐Åström boiler‐turbine unit. A Takagi‐Sugeno fuzzy control system is introduced for the nonlinear modeling of the Bell‐Åström boiler‐turbine unit. Based on the Takagi‐Sugeno fuzzy models, a nonlinear tracking controller is developed, and the proposed control law is comprised of a state‐feedforward term and a state‐feedback term. The stability of the closed‐loop control system is analyzed on the basis of Lyapunov stability theory via the linear matrix inequality approach and Schur complement. Moreover, model uncertainties are also considered, and it is proved that with the proposed control law the tracking error converges to zero. To assess the performance of the proposed nonlinear state‐feedback state‐feedforward control strategy, a nonlinear model predictive control strategy and a linear strategy are presented as comparisons. The effectiveness and the advantages of the proposed nonlinear state‐feedback state‐feedforward control strategy are demonstrated by simulations.  相似文献   

13.
This paper proposes a nonlinear model predictive direct power control (PDPC) strategy for a double fed induction generator (DFIG)‐based wind energy generation system. Active and reactive power variations of DFIG are calculated based on machine rules, and a nonlinear model of DFIG is given. A nonlinear model predictive controller (NMPC) is presented based on the useful cost function and constraint that it results in more proximity between simulations and reality. The power and current ripples are reduced and the optimal rotor voltage is generated based on an objective function and the constraints. The rotor voltage vector is calculated in the synchronous reference frame and transferred into the rotor reference frame. Simulation results of a 2 MW DFIG system show good performance of the proposed method during variation of active and reactive powers, machine parameters, and wind speed. Also, the transient responses of active and reactive powers are within a few milliseconds.  相似文献   

14.
A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper. Firstly, a dynamical system of the quadrotor taking into account aerodynamical effects induced by lateral wind and actuator faults is considered using the Newton-Euler approach. Then, based on active disturbance rejection control (ADRC), the fault tolerant controller is proposed to recover faulty system and reject perturbations. The developed controller takes wind gusts, actuator faults and measurement noises as total perturbations which are estimated by improved extended state observer (ESO) and compensated by nonlinear feedback control law. So, the developed robust fault tolerant controller can successfully accomplish the tracking of the desired output values. Finally, some simulation studies are given to illustrate the effectiveness of fault recovery of the proposed scheme and also its ability to attenuate external disturbances that are introduced from environmental causes such as wind gusts and measurement noises.   相似文献   

15.
Nonlinear model predictive control (NMPC) is a strong candidate to handle the control challenges emerging in the modern wind energy industry. Recent research suggested that wind turbine (WT) control based on economic NMPC (ENMPC) can improve the closed-loop performance and simplify the task of controller design when compared to a classical NMPC approach. This paper establishes a formal relationship between the ENMPC controller and the classic NMPC approach, and compares empirically their closed-loop nominal behaviour and performance. The robustness of the performance is assessed for an inaccurate modelling of the tower fore-aft main frequency. Additionally, though a perfect wind preview is assumed here, the effect of having a limited horizon of preview of the wind speed via the LIght Detection And Ranging (LIDAR) sensor is investigated. Finally, this paper provides new algorithmic solutions for deploying ENMPC for WT control, and report improved computational times.  相似文献   

16.
The objective of this work is to enhance the economic performance of a batch transesterification reactor producing biodiesel by implementing advanced, model based control strategies. To achieve this goal, a dynamic model of the batch reactor system is first developed by considering reaction kinetics, mass balances and heat balances. The possible plant-model mismatch due to inaccurate or uncertain model parameter values can adversely affect model based control strategies. Therefore, an evolutionary algorithm to estimate the uncertain parameters is proposed. It is shown that the system is not observable with the available measurements, and hence a closed loop model predictive control cannot be implemented on a real system. Therefore, the productivity of the reactor is increased by first solving an open-loop optimal control problem. The objective function for this purpose optimizes the concentration of biodiesel, the batch time and the heating and cooling rates to the reactor. Subsequently, a closed-loop nonlinear model predictive control strategy is presented in order to take disturbances and model uncertainties into account. The controller, designed with a reduced model, tracks an offline determined set-point reactor temperature trajectory by manipulating the heating and cooling mass flows to the reactor. Several operational scenarios are simulated and the results are discussed in view of a real application. With the proposed optimization and control strategy and no parameter mismatch, a revenue of 2.76 $ min−1 can be achieved from the batch reactor. Even with a minor parameter mismatch, the revenue is still 2.01 $ min−1. While these values are comparable to those reported in the literature, this work also accounts for the cost of energy. Moreover, this approach results in a control strategy that can be implemented on a real system with limited online measurements.  相似文献   

17.
This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new contro-ller are summarized.   相似文献   

18.
《Journal of Process Control》2014,24(10):1609-1626
This paper develops a stable model predictive tracking controller (SMPTC) for coordinated control of a large-scale power plant. First, a Takagi–Sugeno (TS) fuzzy model is established to approximate the behavior of the boiler–turbine coordinated control system (CCS) using fuzzy clustering and subspace identification (SID). Then, an SMPTC is designed based on the fuzzy model to track the power and pressure set-points while guaranteeing the input-to-state stability and the input constraints of the system. An output-based objective function is adopted for the proposed SMPTC so that the controller could be directly applicable for the data-driven model. Moreover, the effect of modeling mismatches and unknown plant variations has been overcome by the use of a disturbance term and steady-state target calculator (SSTC). Simulation results for a 600 MW power plant show that an off-set free tracking performance can be achieved over a wide range load variation.  相似文献   

19.
We consider the problem of predictive control of uncertain stochastic discrete I/O systems. Given a model identification procedure able to give accurate output system estimates, e.g. a neural network approximation, we use another feedforward neural network to generate at each time step a constrained optimal control. Dynamic backpropagation is used to improve when necessary the controller network parameters. Both system and controller neural structures are first selected off-line by a statistical Bayesian procedure in order to make the predictive control minimizing process more efficient. The issue of stochastic stability of the closed-loop is considered. We developed this approach for the tracking control of such uncertain systems as biotechnological processes. Actual and simulated predictive neuro-control case studies in this field of application are proposed as illustrations. A comparison with a more classic quasi-Newton-based approach is also proposed, showing the interest of this neuro-control approach.  相似文献   

20.
In this paper, the regulation control problem of the active and reactive power at the common connection point between a doubly fed induction generator and the grid is approached. The proposed controller is developed exploiting the passivity properties of the considered model for the control system. It is considered the existence of a wind turbine that delivers a time-varying torque to the generation unit which exhibits a highly nonlinear structure due to the variations of the wind speed. From a theoretical perspective, the main feature of the contribution lies in the fact that it is formally proved that the equilibrium point of the closed-loop system that corresponds to the desired power exhibits practical global asymptotic stability properties. This characteristic is obtained applying well-known theory from the perturbed nonlinear dynamical systems theory. However, in the numerical evaluation of the proposed controller, it is illustrated how these properties are indeed stronger since asymptotic stability is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号