首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanowire-structured MnO2 active materials were prepared by a chemical precipitation method and their supercapacitive properties for use in the electrodes of supercapacitors were investigated by means of cyclic voltammetry in an aqueous gel electrolytes consisting of 1 M Na2SO4 and fumed silica (SiO2). The MnO2 electrode showed a maximum specific capacitance of 151 F g−1 after 1000 cycles at 100 mV s−1 when using the gel electrolyte containing 3 wt.% of SiO2, which is higher than 121 F g−1 obtained when using the 1 M Na2SO4 liquid electrolyte alone.  相似文献   

2.
The performances of different promoters (CeO2, ZrO2 and Ce0.5Zr0.5O2 solid solution) modified Pd/SiC catalysts for methane combustion are studied. XRD and XPS results showed that Zr4+ could be incorporated into the CeO2 lattice to form Zr0.5Ce0.5O2 solid solution. The catalytic activities of Pd/CeO2/SiC and Pd/ZrO2/SiC are lower than that of Pd/Zr0.5Ce0.5O2/SiC. The Pd/Zr0.5Ce0.5O2/SiC catalyst can ignite the reaction at 240 °C and obtain a methane conversion of 100% at 340 °C, and keep 100% methane conversion after 10 reaction cycles. These results indicate that active metallic nanoparticles are well stabilized on the SiC surface while the promoters serve as oxygen reservoir and retain good redox properties.  相似文献   

3.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

4.
Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 × 10−3 S cm−1 has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758 V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery.  相似文献   

5.
Mullite-based multilayered structures have been suggested as promising environmental barrier coatings for Si3N4 and SiC ceramics. Mullite has been used as bottom layer because its thermal expansion coefficient closely matches those of the Si-based substrates, whereas Y–ZrO2 has been tried as top layer due to its stability in combustion environments. In addition, mullite/ZrO2 compositions may work as middle layers to reduce the thermal expansion coefficient mismatch between the ZrO2 and mullite layers. Present work studies the thermal behaviour of a flame sprayed mullite/ZrO2 (75/25, v/v) composite coating. The changes in crystallinity, microstructure and thermal conductivity of free-standing coatings heat treated at two different temperatures (1000 and 1300 °C) are comparatively discussed. The as-sprayed and 1000 °C treated coatings showed an almost constant thermal conductivity (K) of 1.5 W m−1 K−1. The K of the 1300 °C treated specimen increased up to twice due to the extensive mullite crystallization without any cracking.  相似文献   

6.
Sputter-deposited zirconium and Zr-16 at.% Si alloy have been anodized to various voltages at several formation voltages in 0.1 mol dm−3 ammonium pentaborate electrolyte at 298 K for 900 s. The resultant anodic films have been characterized using X-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy, and electrochemical impedance spectroscopy. The anodic oxide films formed on Zr-16 at.% Si are amorphous up to 30 V, but the outer part of the anodic oxide films crystallizes at higher formation voltages. This is in contrast to the case of sputter-deposited zirconium, on which the crystalline anodic oxide films, composed mainly of monoclinic ZrO2, are developed even at low formation voltages. The outer crystalline layer on the Zr-16 at.% Si consists of a high-temperature stable tetragonal phase of ZrO2. Due to immobile nature of silicon species, silicon-free outermost layer is formed by simultaneous migrations of Zr4+ ions outwards and O2− ions inwards. An intermediate crystalline oxide layer, in which silicon content is lower in comparison with that in the innermost layer, is developed at the boundary of the crystalline layer and amorphous layer. Capacitances of the anodic zirconium oxide are highly enhanced by incorporation of silicon due to reduced film thickness, even though the permittivity of anodic oxide decreases with silicon incorporation.  相似文献   

7.
The electrochemical behavior of a commercial LiCoO2 with spherical shape in a saturated Li2SO4 aqueous solution was investigated with cyclic voltammetry and electrochemical impedance spectroscopy. Three redox couples at ESCE = 0.87/0.71, 0.95/0.90 and 1.06/1.01 V corresponding to those found at ELi/Li+=4.08/3.83, 4.13/4.03 and 4.21/4.14 V in organic electrolyte solutions were observed. The diffusion coefficient of lithium ions is 1.649 × 10−10 cm2 s−1, close to the value in organic electrolyte solutions. The results indicate that the intercalation and deintercalation behavior of lithium ions in the Li2SO4 solution is similar to that in the organic electrolyte solutions. However, due to the higher ionic conductivity of the aqueous solution, current response and reversibility of redox behavior in the aqueous solution are better than in the organic electrolyte solutions, suggesting that the aqueous solution is favorable for high rate capability. The charge transfer resistance, the exchange current and the capacitance of the double layer vary with the charge voltage during the deintercalation process. At the peak of the oxidation (0.87 V), the charge transfer resistance is the lowest. These fundamental results provide a good base for exploring new safe power sources for large scale energy storage.  相似文献   

8.
Carbon coated Li3V2(PO4)3 cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 Å. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g−1 when cycled at 1 C rate. The apparent Li+ diffusion coefficients of the material ranged between 9.5 × 10−10 and 0.9 × 10−10 cm2 s−1, which were larger than those of olivine LiFePO4. The large lithium diffusion coefficient of Li3V2(PO4)3 has been attributed to its special NASICON-type structure.  相似文献   

9.
A monolayer of Keggin-type heteropolyanion [SiNi(H2O)W11O39]6− was fabricated by electrodepositing [SiNi(H2O)W11O39]6− on cysteamine modified gold electrode. The monolayer of [SiNi(H2O)W11O39]6− modified gold electrode was characterized by atomic force microscopy (AFM) and electrochemical method. AFM results showed the [SiNi(H2O)W11O39]6− uniformly deposited on the electrode surface and formed a porous monolayer. Cyclic voltammetry exhibited one oxidation peak and two reduction peaks in 1.0 M H2SO4 in the potential range of −0.2 to 0.7 V. The constructed electrode could exist in a large pH (0-7.6) range and showed good catalytic activity towards the reduction of bromate anion (BrO3) and nitrite (NO2), and oxidation of ascorbic acid (AA) in acidic solution. The well catalytic active of the electrode was ascribed to the porous structure of the [SiNi(H2O)W11O39]6 monolayer.  相似文献   

10.
《Fuel》2003,82(2):147-151
The aim of this paper is to show how a cheap carbonaceous material such as low rank coal-based carbon (or char) can be used in the combined SO2/NO removal from exhaust gas at the linear gas velocity used in commercial systems (0.12 m s−1). Char is produced from carbonization and optionally activated with steam. This char is used in a first step to abate the SO2 concentration at the following conditions: 100 °C, space velocity of 3600 h−1, 6% O2, 10% H2O, 1000 ppmv SO2, 1000 ppmv NO and N2 as remainder. In a second step, when the SO2 concentration in the flue gas is low, NO is reduced to N2 and steam at the following experimental conditions: 150 °C, space velocity of 900 h−1, 6% O2, 10% H2O, 0-500 ppmv SO2, 1000 ppmv NO, 1000 ppmv NH3 and N2 as remainder.It has been shown that the presence of NO has no effect on SO2 abatement during the first step of combined SO2/NO removal system and that low SO2 inlet concentration has a negligible effect on NO reduction in the second step. Moreover, this char can be thermally regenerated after use for various cycles without loss of activity. On the other hand, this regenerated char shows the highest NO removal activity (compared to parent chars, either carbonized or steam activated) which can be attributed to the activating effect of the sulfuric acid formed during the first step of the combined SO2/NO removal system.  相似文献   

11.
Ni modified K2CO3/MoS2 catalyst was prepared and the performance of higher alcohol synthesis catalyst was investigated under the conditions: T = 280–340 °C, H2/CO (molar radio) = 2.0, GHSV = 3000 h 1, and P = 10.0 MPa. Compared with conventional K2CO3/MoS2 catalyst, Ni/K2CO3/MoS2 catalyst showed higher activity and higher selectivity to C2+OH. The optimum temperature range was 320–340 °C and the maximum space-time yield (STY) of alcohol 0.30 g/ml h was obtained at 320 °C. The selectivity to hydrocarbons over Ni/K2CO3/MoS2 was higher, however, it was close to that of K2CO3/MoS2 catalyst as the temperature increased. The results indicated that nickel was an efficient promoter to improve the activity and selectivity of K2CO3/MoS2 catalyst.  相似文献   

12.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

13.
High burnup is a goal for further development of advanced nuclear power in the future. However, along with the increase of burnup, it becomes more diffidult to control reactor reactivity, which affects the operation safety of the nuclear reactor. Al2O3/B4C burnable poison materials widely used in pressurized water reactor currently will not meet the requirements of burnable poison materials in high burnup nuclear power. Because of the better performance of ZrO2/Gd2O3 burnable poison materials than that of Al2O3/B4C, this paper studies the preparation of ZrO2/Gd2O3 composite ceramic materials by the coprecipitation method. The experimental results show that at the sintering temperature of 1500–1650 °C, ZrO2/Gd2O3 composite ceramic grains are small, compact and uniform with the generation of homogeneous solid solution. At 1600 °C, ZrO2–10%Gd2O3 has the highest density and mechanical strength.  相似文献   

14.
Guohong Qiu 《Electrochimica acta》2008,53(12):4074-4081
The direct electrochemical reduction process of Nb2O5 powder was investigated by cyclic voltammetry and constant potential electrolysis with a novel metallic cavity electrode in molten calcium chloride at 850 °C. The products of both constant potential and constant voltage electrolysis were characterized by XRD, SEM and EDX. CaNb2O6 was formed upon addition of solid Nb2O5 into molten CaCl2 when CaO was present. During the electrolysis solid Nb2O5 was reduced to various niobium oxides of lower oxidation states, including some composite oxides, and then was converted completely to metallic niobium near −0.35 V (vs. Ag/AgCl), which was more positive than the reduction potential of Ca2+. Constant potential electrolysis was applied at the potentials near the reduction current peaks derived from the cyclic voltammetry curves, and cell voltages were monitored. The voltage was near 2.4 V when the oxide was metallized at −0.35 V (vs. Ag/AgCl). Nb2O5 pellet could be used to prepared metallic niobium at cell voltage 2.4 V in a larger electrolysis bath filled with calcium chloride at 850 °C. The experiment results further demonstrated the direct electrochemical reduction mechanism of Nb2O5 powder in a molten system.  相似文献   

15.
A series of novel single-phase white phosphors Ba1.3Ca0.69−x−ySiO4:0.01Eu2+,xMn2+, yDy3+ were synthesized by the solid-state method. The excitation spectra of these phosphors exhibit a broad band in the range of 260–410 nm, which can meet the application requirements for near-UV LED chips (excited at 350–410 nm). The emission spectra consist of two broad bands positioned around 455 nm and 596 nm, which are assigned to 5d→4f transition of Eu2+, and 4T16A1 transition of Mn2+, respectively. The luminescence intensity of phosphors enhances obviously by doping Dy3+ ions, and the intensity of two bands reaches an optimum when Dy3+ amounts to 2 mol%. In addition, thermoluminescence investigation of phosphor was conducted, getting two shallow trap defects with activation energy of 0.43 eV and 0.45 eV, which demonstrates the energy transfer mechanism of Dy–Eu through the process of hole and electron traps. By precisely tuning the Mn2+ content, an optimized white light with color rendering index (CRI) of Ra=84.3%, correlated color temperature (CCT) of Tc=8416 K and CIE chromaticity coordinates of (0.2941, 0.2937) is generated. The phosphor could be a potential white phosphors for near-UV light emitting diodes.  相似文献   

16.
J.D.A. Bellido 《Fuel》2009,88(9):1673-1034
ZrO2, γ-Al2O3 and ZrO2/γ-Al2O3-supported copper catalysts have been prepared, each with three different copper loads (1, 2 and 5 wt%), by the impregnation method. The catalysts were characterized by nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR) with H2, Raman spectroscopy and electronic paramagnetic resonance (EPR). The reduction of NO by CO was studied in a fixed-bed reactor packed with these catalysts and fed with a mixture of 1% CO and 1% NO in helium. The catalyst with 5 wt% copper supported on the ZrO2/γ-Al2O3 matrix achieved 80% reduction of NO. Approximately the same rate of conversion was obtained on the catalyst with 2 wt% copper on ZrO2. Characterization of these catalysts indicated that the active copper species for the reduction of NO are those in direct contact with the oxygen vacancies found in ZrO2.  相似文献   

17.
CuO-CoO-Cr2O3 mixed with MFI Zeolite (Si/Al = 35) prepared by co-precipitation was used for synthesis gas conversion to long chain hydrocarbon fuel. CuO-CoO-Cr2O3 catalyst was prepared by co-precipitation method using citric acid as complexant with physicochemical characterization by BET, TPR, TGA, XRD, H2-chemisorptions, SEM and TEM techniques. The conversion experiments were carried out in a fixed bed reactor, with different temperatures (225-325 °C), gas hourly space velocity (457 to 850 h−1) and pressure (28-38 atm). The key products of the reaction were analyzed by gas chromatography mass spectroscopy (GC-MS). Significantly high yields of liquid aromatic hydrocarbon products were obtained over this catalyst. Higher temperature and pressure favored the CO conversion and formation of these liquid (C5-C15) hydrocarbons. Higher selectivity of C5 + hydrocarbons observed at lower H2/CO ratio and GHSV of the feed gas. On the other hand high yields of methane resulted, with a decrease in C5+ to C11+ fractions at lower GHSV. Addition of MFI Zeolite (Si/Al = 35) to catalyst CuO-CoO-Cr2O3 resulted a high conversion of CO-hydrogenation, which may be due to its large surface area and small particle size creating more active sites. The homogeneity of various components was also helpful to enhance the synergistic effect of Co promoters.  相似文献   

18.
Free standing PEDOT [poly(3,4-ethylenedioxythiophene)] films (with surface conductivities of 200-400 S cm−1) were generated in tetrabutylammonium trifluromethanesulfonate (TBACF3SO3) electrolytes by potentiostatic (EP 1.05 V vs. Ag wire) electropolymerisation in propylene carbonate (at −27 °C) and methyl benzoate (at −4 °C). Films obtained in the TBACF3SO3 electrolytes showed a length increase of 2-3% during scans to negative potentials under isotonic (constant load 1.35 MPa) and stress of 0.3 MPa under isometric (constant length) conditions. Cation movement occurred due to immobilisation of CF3SO3 anions during electropolymerisation. The system showed good stability and low creep during square wave electrochemical cycling in the potential range from 0.0 to 1.0 V. The surface morphology (SEM) of the PEDOT films showed that the polymer structure is dependent upon the solvent used during the polymerisation process.  相似文献   

19.
ZrO2-doped manganese–cerium oxide catalyzed ethanol oxidation effectively and ethanol was fully oxidized to CO2 at 453 K. The catalyst also showed quite promising stability for 120 h on-stream without obvious loss in ethanol conversion. Structural analyses have revealed that ZrO2-doping enhanced the oxygen storage capacity of ceria by generating more oxygen vacancies, and at the same time promoted the thermal stability through the formation of solid solution.  相似文献   

20.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号