首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
Experimental studies have been performed to investigate the thermal performances of woks fabricated from materials with different thermal conductivities and surface emissivities. A pre-mixed air/butane flame impinged vertically upwards upon a flat impingement-plate’s (to simulate the wok’s flat-bottom) surface under laminar-flow conditions. The operation parameters of the premixed flame were kept constant (i.e., Reynolds number = 1200; equivalence ratio = 1; and nozzle-to-plate distance = 5). In order to examine the effect of conduction, three materials, namely red brass (k = 61 W/mK), bronze (k = 26 W/mK) and stainless steel (k = 14.9 W/mK), were considered. Because of the lower thermal-conductivity and hence higher conduction–resistance, a significantly lower heat-flux would ensue over the stagnation region for the stainless-steel wok. However, there were no significant differences in the heat-flux distributions in the wall-jet regions for the stainless-steel, bronze and red-brass impingement plates. To examine the effects of radiation, three red-brass impingement plates with surface-emissivities of either 0.1, 0.38 or 0.98 were tested experimentally. Different surface-emissivities have only slight impact, on the heat-flux distributions on the wok’s surface. In addition, there were only insignificant differences in the heat-flux and temperature distributions in the wall-jet regions of the impingement plates fabricated of the same material but with different surface-emissivities.  相似文献   

2.
An experimental investigation is performed to study the effect of jet-to-plate spacing and Reynolds number on the local heat transfer distribution to normally impinging submerged circular air jet on a smooth and flat surface. A single jet from a straight circular nozzle of length-to-diameter ratio (l/d) of 83 is tested. Reynolds number based on nozzle exit condition is varied between 12,000 and 28,000 and jet-to-plate spacing between 0.5 and 8 nozzle diameters. The local heat transfer characteristics are estimated using thermal images obtained by infrared thermal imaging technique. Measurements for the static wall pressure distribution due to impinging jet at different jet-to-plate spacing are made. The local heat transfer distributions are analyzed based on theoretical predictions and experimental results of the fluid flow characteristics in the various regions of jet impingement. The heat transfer at the stagnation point is analyzed from the static wall pressure distribution. Semi-analytical solution for heat transfer in the stagnation region is obtained assuming an axisymmetric laminar boundary layer with favourable pressure gradient. The heat transfer in the wall jet region is studied considering fluid flow over a flat plate of constant heat flux. However, heat transfers in the transition region are explained from reported fluid dynamic behaviour in this region. Correlations for the local Nusselt numbers in different regions are obtained and compared with experimental results.  相似文献   

3.
Experiments were performed to investigate the heat transfer characteristics of a row of three premixed, laminar, butane/air flame jets impinging on a water-cooled flat plate. The between-jet interference was found to reduce the heat transfer rate in the jet-to-jet interacting zone due to the depressed combustion. The interference became stronger when the jet-to-jet spacing and/or the nozzle-to-plate distance were/was small. The positive pressure existed in the between-jet interacting zone caused the asymmetric flame and heat transfer distribution of the side jet. The meeting point of the spreading wall jets of the central and the side jets did not occur at the midpoint of the neighboring jets, but at a location shifted slightly outwards. The maximum local heat flux and the maximum area-averaged heat flux occurred at a moderate nozzle-to-plate distance of 5d with a moderate jet-to-jet spacing of 5d. The lowest area-averaged heat flux was produced when both the jet-to-jet spacing and the nozzle-to-plate distance were small. Comparing with a single jet under the same experimental conditions, the heat transfer rates in both the stagnation point and the maximum heat transfer point were shown to be enhanced in a row of three-jet-impingement system. The present study provided detailed information on the heat transfer characteristics of a row of three in-line impinging flame jets, which had rarely been reported in previous study.  相似文献   

4.
A swirling flow has been induced in a premixed gas-fired impinging circular flame jet by adding two tangential air flows to the main axial air/fuel flow. The flame jet system was considered to be small-scale and operated under low-pressure, laminar flow conditions. The effects of Reynolds number of the air/butane mixture and nozzle-to-plate distance on the heating performance of the flame were studied and compared with the heat-flux distributions on an impingement plate under different operating conditions. The whole investigation was conducted under the stoichiometric air/fuel condition (i.e., equivalence ratio, Φ = 1) with the Reynolds number being varied from 800 to 1700, and nozzle-to-plate distance being selected between 1.5 and 4.0. The introduction of swirl to small-scale, low-pressure, laminar premixed gas-fired impinging circular flame jets is the method for enhancing their thermal performances. The heat-flux distribution on the impingement plate was more uniform and the flame temperatures essentially higher when compared with a similar flame jet system without induced swirl.  相似文献   

5.
Experimental studies were carried out to investigate the flame shape and the heat transfer and wall pressure characteristics of a pair of laminar premixed butane/air flame jets impinging vertically upon a horizontal water-cooled flat plate at jet Reynolds numbers of 800, 1000 and 1200, respectively. Equivalence ratio of the butane/air mixture was maintained constantly at unity. The flame shape, the pressure distribution on the impingement plate and the heat transfer from the flame to the plate were greatly influenced by the interference occurred between the two flame jets. This interference caused a sharp pressure peak at the between-jet midpoint and the positive pressures at the between-jet area, which led to the separation of the wall jet from the impingement plate after collision. Such interference became more significant when the non-dimensional jet-to-jet spacing (S/d) and the nozzle-to-plate distance (H/d) were reduced. Heat transfer in the interaction zone between the jets was at the lowest rate due to this interference at the smallest S/d ratio of 2.6, resulting from the separation of the high-temperature inner reaction zone of the flame from the impingement plate. On the other hand, the interference enhanced the heat transfer in the interaction zone between the jets when the S/d ratio was greater than 5, by enhancing the heat transfer coefficient. The average heat flux of the impingement plate was found to increase significantly with the increasing H/d ratio until H/d=6. The present study provided detailed information on flame shape and the heat transfer and wall pressure characteristics of a twin laminar pre-mixed impinging circular flame jets, which has rarely been reported in previous studies.  相似文献   

6.
Jet impingement heat transfer from a round gas jet to a flat wall was investigated numerically for a ratio of 2 between the jet inlet to wall distance and the jet inlet diameter. The influence of turbulence intensity at the jet inlet and choice of turbulence model on the wall heat transfer was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet was observed in the stagnation region, where the wall heat flux increased by a factor of almost 3 when increasing the turbulence intensity from 1.5% to 10%. The choice of turbulence model also influenced the heat transfer predictions significantly, especially in the stagnation region, where differences of up to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number, and the turbulence intensity at the jet inlet for impinging jet flows at high jet Reynolds numbers.  相似文献   

7.
《Energy Conversion and Management》2005,46(18-19):2803-2837
A review of the literature pertaining to flame impingement heat transfer is presented. Studies related to different modes of heat transfer, flame shapes and flame stabilization are considered. Investigations of previous work for different experimental configurations, operating conditions, burner geometry, separation distance and stagnation target with instrumentation are compared. Studies related to measurement and contributions of non-luminous radiation to overall heat transfer are considered. Modeling and computation of flame impingement heat transfer processes in the recent literature have been reviewed. Semi-analytical and empirical correlations to find the total heat flux are briefly presented. Finally, unresolved issues are mentioned for further research.  相似文献   

8.
The transient cooling of hot stainless steel surface of 0.25 mm thickness is done with round water jet impingement. Initially, the surface was heated up to the temperature of 800 °C before the water was injected through straight tube type nozzle of 2.5 mm diameter and 250 mm length. During impingement cooling, the surface temperature was measured up to 12 mm radial distance away from the stagnation point. The jet exit to surface spacing, z/d, and jet Reynolds number, Re, varied in the range of 4–16 and 5000–24,000 respectively. The surface rewetting and transient heat flux of the test-surface was studied for these operating parameters.During impingement cooling process the initial rewetting occurred at stagnation region with the lowest wetting delay period. In fact, the rewetting temperature, rewetting velocity and the maximum heat flux reduced for extreme spatial location. However, the wetting delay increased significantly for the locations away from the stagnation point. The surface rewetting and transient heat flux were increased with the rise in jet Reynolds number, resulting in the enhancement in rewetting temperature, rewetting velocity and reduced wetting delay. The maximum heat flux was obtained for 4–6 mm radial location. The effect of jet exit to surface spacing on the rewetting parameters is found to be marginal. A correlation has been developed which predicted the maximum heat flux within an error band of ±10%.  相似文献   

9.
A combined approach has been employed to characterize the flow field and local heat transfer in jet impingement configurations, featuring a mass transfer experiment and a digital visualization technique. A jet velocity range is spanned to ensure flow regime transition.The well-known heat/mass transfer analogy has been used to infer on the local heat exchange on a infinite plate. In this experiment, a naphthalene film is ablated from a disk, due to jet exposure. Automated contact measurements of the variation of film depth in the stagnation region and beyond have been performed. From the local naphthalene loss rate the local heat transfer is then inferred. Coherent structures are created both at the interface between free jet and quiescent medium and upon impingement at plate, and need to be visualized in the vicinity of stagnation. To this end a particle image velocimetry system is exploited to extract the two components velocity instantaneous information.Ablation measurements confirm the non-monotonic progress of local heat transfer for small nozzle-to-plate spacings. The visualizations evidence that local heat transfer is strongly influenced by impingement structures: the maximum heat transfer coefficient offset which can be detected is due, even for laminar or transitional jet, to large-scale toroidal vortices impacting on the plate.  相似文献   

10.
Many industrial applications use flame impingement to obtain high heat-transfer rates. An analytical expression for the convective part of the heat transfer of a flame jet to a plate is derived. Therefore, the flame jet is approximated by a hot inert jet. In contradiction with existing convective heat-transfer relations, our analytical solution is applicable not only for large distances between the jet and the plate, but also for close spacings. Multiplying the convective heat transfer by a factor which takes chemical recombination in the cold boundary layer into account, results in an expression for the heat flux from a flame jet to the hot spot of a heated plate. Numerical and experimental validation show good agreement.  相似文献   

11.
A combined experimental and numerical study has been conducted to determine the stagnation point heat transfer for laminar methane/air flame impinging on a flat surface. Effects of Reynolds number, equivalence ratio and burner diameter on stagnation point heat flux were examined experimentally at different separation heights. Maximum stagnation point heat flux was obtained when the flat surface was closest to the tip of the inner premixed reaction zone. Heat flux decreased along the axial direction when the separation distance was further increased from the tip of inner reaction zone. There was a secondary rise in heat flux at the stagnation point at larger separation distances. Correlations were developed for stagnation point Nusselt number. Numerical simulations were carried out using a commercial CFD code (FLUENT) for laminar methane/air flame impinging on a flat surface for various separation distances. Results were compared with those found experimentally. The reason for conducting the simulations was to (a) gain more insight into how the presence of the plate affects the flame and the flow and temperature fields and (b) to explain the reason for high heat flux when the tip of the inner reaction zone was very close to the stagnation point.  相似文献   

12.
Guoxin Hu  Lixiang Zhang 《传热工程》2013,34(12):1008-1016
In this paper, the experimental and numerical study has been carried out to investigate the water jet impingement on a convex hemispherical surface. The pressure and skin friction coefficient distributions on the impingement surface were analyzed numerically. A great deal of attention was paid to analyze the effects of the jet impingement exit velocity and the nozzle-to-surface distance on the heat transfer characteristics. A comparison of the heat transfer coefficient was performed between the jet impingement on the convex surface and the flat plate. The results show that the Nusselt number for the convex surface is higher than that for the flat surface. The local Nusselt number is decreased monotonically from its maximum value at the stagnation point for lower Reynolds numbers. A secondary maxima occurs for higher Reynolds numbers. The experiment and simulation were performed with the following parameters: the jet impingement Reynolds number of Re = 1947–19478, and the nozzle-to-surface distance of L/D = 2.5–25.  相似文献   

13.
An experimental investigation on cooling performances of integrally impingement/effusion cooling configurations with film cooling holes angled normal to the mainstream flow is conducted. The adiabatic film cooling effectiveness and the overall cooling effectiveness are measured on a polycarbonate test plate and a stainless steel plate respectively. Effects of the blowing ratio (ranged from 0.6 to 2.4), multi-hole arrangement (inline and staggered), hole-to-hole pitch ratio (ranged from 3 to 5) and jet-to-target spacing ratio (ranged from 2 to 4) on the cooling performance are examined. In addition, jet impingement heat transfer is measured to evaluate the dense array jet impingement behaviors with local extraction of coolant via effusion holes. A new parameter named corrected blowing ratio is introduced in the present to evaluate the cooling effectiveness for different effusion or impingement–effusion configurations under a given quantity of cooling air. In an integrally impingement–effusion cooling configuration, multiple jet impingement with local extraction of coolant via effusion holes is able to produce higher overall heat transfer under lower jet-to-target spacing and denser jet array. The action of additional jet impingement heat transfer on improving overall cooling performance is highly dependant on the blowing ratio, multi-hole arrangement and jet-to-target spacing, which seem to be behaved superior in the situations where the film cooling effect isolating the wall surface from the hot mainstream is weak. For an integrally impingement–effusion cooling configuration, the densest hole-to-hole array is favorable in the situations where the coolant mass flow rate per unit area of cooled surface is low. As the coolant mass flow rate per unit area of cooled surface increases, the hole-to-hole pitches could be gradually enlarged to make effective utilization of array jet impingement.  相似文献   

14.
Experiments were performed to study the heat transfer characteristics of a premixed butane/air slot flame jet impinging normally on a horizontal rectangular plate. The effects of Reynolds number and the nozzle-to-plate distance on heat transfer were examined. The Reynolds number varied from 800 to 1700, while the nozzle-to-plate distance ranged from 2de to 12de. Comparisons were made between the heat transfer characteristics of slot jets and circular jets under the same experimental conditions. It was found that the slot flame jet produces more uniform heat flux profile and larger averaged heat fluxes than the circular flame jet.  相似文献   

15.
An analytical approach for heat transfer modelling of jet impingement boiling is presented. High heat fluxes with values larger than 10 MW/m2 can be observed in the stagnation region of an impinging jet on a red hot steel plate with wall temperatures normally being associated with film boiling. However, sufficiently high degrees of subcooling and jet velocity prevent the formation of a vapor film, even if the wall superheat is large. Heat transfer is governed by turbulent diffusion caused by the rapid growth and condensation of vapor bubbles. Due to the high population of bubbles at high heat fluxes it has to be assumed that a laminar sublayer cannot exist in the immediate vicinity of a red hot heating surface. A mechanistic model is proposed which is based on the assumption that due to bubble growth and collapse the maximum turbulence intensity is located at the wall/liquid interface and that eddy diffusivity decreases with increasing wall distance.  相似文献   

16.
This is the second of a two-part paper on heat transfer from an impinging flame jet reporting time-resolved results. Axial and radial profiles of time-resolved local heat fluxes of methane-air jet flames impinging normal to a cooled plate are reported, including the root mean square (RMS), probability distribution function (PDF), and the power spectral density (PSD) of the heat flux fluctuations as a function of equivalence ratio, Reynolds number, and nozzle-plate spacing. The RMS, PDF, and PSD of the heat flux signal from the stagnation point and along the plate revealed correlation of the local heat flux to the flame structure. Impingement heat flux from premixed nozzle-stabilized flames was characterized by small RMS fluctuations and frequency behavior indicating the formation of weak, buoyancy-driven vortex structures at the shear layer between the hot gases surrounding the flame and the ambient air. Conversely, diffusion flames were characterized by much larger RMS fluctuations and PSD’s indicating the development of much larger vortex structures. Time-resolved heat flux for lifted flames varied according to flame structure and combustion intensity. PSD magnitudes were related to the range of temperatures in the flow; greater temperature ranges produced larger heat flux variations. The contributing frequencies were related to the duration of the heat flux fluctuation; more rapid changes in heat flux produced higher frequency content.  相似文献   

17.
This paper is the second part of the experimental study on exploring the feasibility of inverse diffusion flame (IDF) for impingement heating. The structures and heat transfer characteristics of an impinging IDF jet have been studied. Four types of impinging flame structure have been identified and reported. The distributions of the wall static pressure are measured and presented. The influences of the global equivalence ratio (), the Reynolds number of the air jet (Reair), and the non-dimensional burner-to-plate distance (H/dair), on the flame structure, and the local and averaged heat transfer characteristics, are reported and discussed. The highest heat transfer occurs when the tip of the flame inner reaction zone impinges on the plate. The heat transfer rate from the impinging IDF is found to be higher than that in the premixed flame jet due to the augmented turbulence level originated from the flame neck. This high heat transfer rate, together with its in-born advantage of no danger of flashback and low level of nitrogen oxides emission, demonstrates the blue, dual-structured, triple-layered IDF is a desirable alternative for impingement heating.  相似文献   

18.
This paper presents the results of an experimental study on the heat transfer characteristics of an inverse diffusion flame (IDF) impinging vertically upwards on a horizontal copper plate. The IDF burner used in the experiment has a central air jet surrounded circumferentially by 12 outer fuel jets. The heat flux at the stagnation point and the radial distribution of heat flux were measured with a heat flux sensor. The effects of Reynolds number, overall equivalence ratio, and nozzle-to-plate distance on the heat flux were investigated. The area-averaged heat flux and the heat transfer efficiency were calculated from the radial heat flux within a radial distance of 50 mm from the stagnation point of the flame, for air jet Reynolds number (Reair) of 2000, 2500 and 3000, for overall equivalence ratios (Φ) of 0.8–1.8, at normalized nozzle-to-plate distances (H/dIDF) between 4 and 10. Similar experiments were carried out on a circular premixed impinging flame for comparison.It was found that, for the impinging IDF, for Φ of 1.2 or higher, the area-averaged heat flux increased as the Reair or Φ was increased while the heat transfer efficiency decreased when these two parameters increased. Thus for the IDF, the maximum heat transfer efficiency occurred at Reair = 2000 and Φ = 1.2. At lower Φ, the heat transfer efficiency could increase when Φ was decreased. For the range of H/dIDF investigated, there was certain variation in the heat transfer efficiency with H/dIDF. The heat transfer efficiency of the premixed flame has a peak value at Φ = 1.0 at H/dP = 2 and decreases at higher Φ and higher H/dP. The IDF could have comparable or even higher heat transfer efficiency than a premixed flame.  相似文献   

19.
Analysis of the heat transfer of an impinging laminar flame jet   总被引:1,自引:0,他引:1  
Flame jet impingement is used in many industrial processes. In this paper an analytical expression is derived for the heat flux of a laminar flame impinging on a flat plate, where the flame jet is approximated by a hot inert jet with the position of the tip of the flame taken equal to the nozzle position. The heal flux in this expression is dependent on the nozzle-to-plate spacing, in contradiction to existing (semi-analytical) relations. The geometry is divided in a region far from the plate and a region dose to the plate. For both regions the velocity profiles are calculated using only the dominant terms of the balance equations. Subsequently these profiles are linked to each other at the boundary between the two zones. Implementing the resulting velocity profile for the complete geometry in the energy equation and integrating over the whole domain results in an expression for the heat flux from the flame to the plate at the hot spot. Numerical calculations show very good agreement with the results of the analytical derivation.  相似文献   

20.
A nine-by-nine jet array impinging on a flat and dimpled plate at Reynolds numbers from 15,000 to 35,000 has been studied by the transient liquid crystal method. The distance between the impingement plate and target plate is adjusted to be 3, 4 and 5 jet diameters. Three jet-induced crossflow schemes, referred as minimum, medium and maximum crossflow correspondingly, have been measured. The local air jet temperature is measured at several positions on the impingement plate to account for an appropriate reference temperature of the heat transfer coefficient. The heat transfer results of the dimpled plate are compared with those of the flat plate. The best heat transfer performance is obtained with the minimum crossflow and narrow jet-to-plate spacing no matter on a flat or dimpled plate. The presence of dimples on the target plate produce higher heat transfer coefficients than the flat plate for maximum and minimum crossflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号