首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of impurity LixNi1−xO when synthesizing spinel LiNi0.5Mn1.5O4 using solid state reaction method, and its influence on the electrochemical properties of product LiNi0.5Mn1.5O4 were studied. The secondary phase LixNi1−xO emerges at high temperature due to oxygen deficiency for LiNi0.5Mn1.5O4 and partial reduction of Mn4+ to Mn3+ in LiNi0.5Mn1.5O4. Annealing process can diminish oxygen deficiency and inhibit impurity LixNi1−xO. The impurity reduces the specific capacity of product, but it does not have obvious negative effect on cycle performance of product. The capacity of LiNi0.5Mn1.5O4 that contains LixNi1−xO can deliver about 120 mAh g−1.  相似文献   

2.
Co3O4/graphene nanocomposite material was prepared by an in situ solution-based method under reflux conditions. In this reaction progress, Co2+ salts were converted to Co3O4 nanoparticles which were simultaneously inserted into the graphene layers, upon the reduction of graphite oxide to graphene. The prepared material consists of uniform Co3O4 nanoparticles (15-25 nm), which are well dispersed on the surfaces of graphene nanosheets. This has been confirmed through observations by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The prepared composite material exhibits an initial reversible lithium storage capacity of 722 mAh g−1 in lithium-ion cells and a specific supercapacitance of 478 F g−1 in 2 M KOH electrolyte for supercapacitors, which were higher than that of the previously reported pure graphene nanosheets and Co3O4 nanoparticles. Co3O4/graphene nanocomposite material demonstrated an excellent electrochemical performance as an anode material for reversible lithium storage in lithium ion cells and as an electrode material in supercapacitors.  相似文献   

3.
A porous Li4Ti5O12 anode material was successfully synthesized from mixture of LiCl and TiCl4 with 70 wt% oxalic acid by a modified one-step solid state method. The anode material Li4Ti5O12 exhibited a cubic spinel structure and only one voltage plateau occurred around 1.5 V. The initial capacity of porous Li4Ti5O12 was 167 and 133 mAh g−1 at 0.5 and 1C charge/discharge rate, respectively, and the capacity retention maintained above 98% after 200 cycles. The porous Li4Ti5O12 structure showed promising rate performance with a capacity of 70 mAh g−1 at charge/discharge 10C rate after 200 cycles. It was demonstrated that the porous structure could withstand 50C charge/discharge rate and exhibited excellent cycling stability.  相似文献   

4.
We report the synthesis of LiNi0.85−xCo0.15MnxO2 positive electrode materials from Ni0.85−xCo0.15Mnx(OH)2 and Li2CO3. XRD and XPS are used to study the effect of Mn-doping on the microstructures and oxidation states of the LiNi0.85−xCo0.15MnxO2 materials. The analysis shows that Mn-doping promotes the formation of a single phase. With increasing substitution of Mn ions for Ni ions, the lattice parameter a decreases, while the lattice parameters c and c/a increase. XPS revealed that the oxidation states of Ni, Co and Mn in LiNi0.85−xCo0.15MnxO2 compounds (where x = 0.1, 0.2 and 0.4) were +2/+3, +3 and +4. The substitution of Mn ions for Ni ions induces a decrease in the average oxidation state of Ni. Because the substitution of Mn for Ni ions is complex, the extent of the changes between the lattice parameter and LM-O differ. The occupation of Ni in Li sites is affected by the ordering of Mn4+ with Ni2+ and Mn4+ with Li+.  相似文献   

5.
采用高温固相法合成了Cr3+掺杂的LiNi0.5Mn1.5O4正极材料,研究了掺杂量对材料物理性能和电化学性能的影响。利用XRD、SEM对材料的结构和形貌进行了表征,结果显示样品具有棱边清晰的尖晶石形貌。讨论了不同Cr3+掺杂量对LiCrxNi0.5-0.5xMn1.5-0.5xO4(x=0,0.05,0.1,0.15,0.2)正极材料性能的影响。充放电测试、循环伏安和交流阻抗测试结果表明:当Cr3+的掺杂量为x=0.1时(LiCr0.1Ni0.45Mn1.45O4)正极材料的性能最好,0.1C、0.5C、1C、2C及5C的首次放电比容量依次为131.54mAh g-1、126.84mAh g-1、121.28mAh g-1、116.49mAh g-1和96.82mAh g-1,1C倍率下循环50次,容量保持率仍为96.5%。  相似文献   

6.
The microwave dielectric properties of La(Mg0.5−xNixSn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La(Mg0.5−xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method at various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Ni0.1Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.71 g/cm3, dielectric constant (?r) of 20.19, quality factor (Q × f) of 74,600 GHz, and temperature coefficient of resonant frequency (τf) of −85 ppm/°C were obtained for La(Mg0.4Ni0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

7.
In this paper, we report on the synthesis of porous LiV3O8 by using a tartaric acid-assisted sol-gel process and their enhanced electrochemical properties for reversible lithium storage. The crystal structure, morphology and pore texture of the as-synthesized samples are characterized by means of XRD, SEM, TEM/HRTEM and N2 adsorption/desorption measurements. The results show that the tartaric acid plays a pore-making function and the calcination temperature is an important influential factor to the pore texture. In particular, the porous LiV3O8 calcined at 300 °C (LiV3O8-300) exhibits hierarchical porous structure with high surface area of 152.4 m2 g−1. The electrochemical performance of the as-prepared porous LiV3O8 as cathode materials for lithium ion batteries is investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The porous LiV3O8-300 displays a maximum discharge capacity of 320 mAh g−1 and remains 96.3% of its initial discharge capacity after 50 charge/discharge cycles at the current density of 40 mA g−1 due to the enhanced charge transfer kinetics with a low apparent activity energy of 35.2 kJ mol−1, suggesting its promising application as the cathode material of Li-ion batteries.  相似文献   

8.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

9.
通过丝网印刷方法,在由LiNi1/3Co1/3Mn1/3O2、导电添加剂和聚偏氟乙烯制成的电极表面涂覆了一层薄薄的氧化石墨烯。在充电截止电压为4.3 V的条件下进行了循环性能和倍率性能测试。结果表明:未改性电极在恒电流充放电测试中容量下降且极化增加,而包覆改性后电极的容量衰减程度和极化增加速度降低。这是由于氧化石墨烯涂层抑制了LiNi1/3Co1/3Mn1/3O2电极和电解质之间的部分副反应,使得改性电极的循环稳定性和倍率性能显著提高,为提升LiNi1/3Co1/3Mn1/3O2电极性能提供了一种环境友好且非常有效的方法。  相似文献   

10.
Al2O3-Ce0.5Zr0.5O2 catalytic powders were synthesized by the coprecipitation (ACZ-C) and mechanical mixing (ACZ-M) methods, respectively. As-synthesized powders were characterized by XRD, Raman spectroscopy, surface area and thermogravimetric analyses. It was found that the mixing extent of Al3+ ions affected the phase development, texture and oxygen storage capacity (OSC) of the Ce0.5Zr0.5O2 powder. Single phase of ACZ-C could be maintained without phase separation and inhibit α-Al2O3 formation up to 1200 °C. The specific surface area value of ACZ-C (81.5 m2/g) was larger than that of ACZ-M (62.1 m2/g) and Ce0.5Zr0.5O2 (17.1 m2/g) powders, which were calcined at 1000 °C. In comparison with ACZ-C and Al2O3, which were calcined at high temperature (900–1200 °C), it was found that the degradation rate of specific surface area of ACZ-C was lower than that of Al2O3. ACZ-C sample showed a higher thermal stability to resist phase separation and crystallite growth, which enhanced the oxygen storage capacity property for Ce0.5Zr0.5O2 powders.  相似文献   

11.
The thermoelectric properties of Na0.8ZnxCo1−xO2/(ZnO)y (x ≤ 0.01, 0 ≤ y ≤ 0.14) have been systematically investigated. The results suggest that doping divalent Zn ions within solubility limit x* ∼ 0.01 leads to simultaneous reduction in resistivity and enhancement of thermopower. Analysis of the results show that the reduction of resistivity may be attributed to improved mobility of carriers, while the enhancement of thermopower may originate from the geometric relaxation of distorted CoO6 octahedra caused by partial Zn substitution, leading to a narrower band width in the strongly correlated environment, consequently resulting in a remarkable 20% improvement in power factor.  相似文献   

12.
The nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni0.8Zn0.2Fe2O4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm−1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5°.The electrochemical supercapacitor study of Ni0.8Zn0.2Fe2O4 thin films has been carried out in 6 M KOH electrolyte.The values of interfacial and specific capacitances obtained were 0.0285 F cm−2 and 19 F g−1, respectively.  相似文献   

13.
The effect of the composition on the electrical properties of BaBi1−xSbxO3 (0 ≤ x ≤ 0.5) negative temperature coefficient (NTC) thermistors was studied. Major phases present in the sintered bodies of BaBi1−xSbxO3 (0 < x < 0.5) ceramics were BaBi0.5Sb0.5O3 compounds with a rhombohedral structure and BaBiO3 compounds with a monoclinal structure. Most pores were located in the grains of BaBiO3 and BaBi0.5Sb0.5O3 ceramics. It was apparent that the ρ25 and B25/85 constant of the thermistors increased with increasing Sb content.  相似文献   

14.
Li4Ti5O12/graphene composite was prepared by a facile sol-gel method. The lattice structure and morphology of the composite were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The electrochemical performances of the electrodes have been investigated compared with the pristine Li4Ti5O12 synthesized by a similar route. The Li4Ti5O12/graphene composite presents a higher capacity and better cycling performance than Li4Ti5O12 at the cutoff of 2.5-1.0 V, especially at high current rate. The excellent electrochemical performance of Li4Ti5O12/graphene electrode could be attributed to the improvement of electronic conductivity from the graphene sheets. When discharged to 0 V, the Li4Ti5O12/graphene composite exhibited a quite high capacity over 274 mAh g−1 below 1.0 V, which was quite beneficial for not only the high energy density but also the safety characteristic of lithium-ion batteries.  相似文献   

15.
We have prepared polycrystalline single-phase ACo2+xRu4−xO11 (A = Sr, Ba; 0 ≤ x ≤ 0.5) using the ceramic method and we have studied their structure, electrical resistivity and Seebeck coefficient, in order to estimate their power factor (P.F.). These layered compounds show values of electrical resistivity of the order of 10−5 Ωm and their Seebeck coefficients are positive and range from 1 μV K−1 (T = 100 K) to 20 μV K−1 (T = 450 K). The maximum power factor at room temperature is displayed by BaCo2Ru4O11 (P.F.: 0.20 μW K−2 cm−1), value that is comparable to that shown by compounds such as SrRuO3 and Sr6Co5O15.  相似文献   

16.
Sb5+-doped (NaBi)0.38(LiCe)0.05[]0.14Bi2Nb2O9 (represented as NBNLCS-x, where [] represents A-site vacancies) ceramics were prepared by the conventional solid-state route. The ceramics well sintered to approach ∼98.5% theoretical density and the tetragonality of crystal structure increased with Sb5+ additions. However, the Curie temperature (TC) and the piezoelectric coefficient (d33) of Sb5+-modified ceramics gradually decreased. The 3 mol% Sb5+-doped samples exhibited optimum properties with a d33 value of ∼22 pC/N planar electromechanical coupling factor (kp) of ∼11.2% and relatively high TC of ∼765 °C. These results indicate that NBNLCS-x material is a promising candidate for high-temperature piezoelectric applications.  相似文献   

17.
Fe3O4 micro-spheres with nanoparticles close-packed architectures were synthesized via a simple chemical method using (NH4)2Fe(SO4)2·6H2O, hexamethylenetetramine, and NaF as reaction materials. This chemical synthesis took place in a vitreous jar under low temperature (90 °C) and atmospheric pressure. The morphology and structure of the as-synthesized products were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectrum. Electrochemical properties of the as-synthesized Fe3O4 micro-spheres as anode electrode of lithium ion batteries were studied by conventional charge/discharge tests, which exhibit steady charge/discharge platforms at different current densities. The as-prepared Fe3O4 electrode shows high initial discharge capacity of 1166 and 1082 mAh g−1 at current density of 0.05 and 0.1 mA cm−2, respectively.  相似文献   

18.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

19.
Ag-doped Ca3Co4O9 thin films with nominal composition of Ca3−xAgxCo4O9 (x = 0∼0.4) have been prepared on sapphire (0 0 0 1) substrates by pulsed laser deposition (PLD). Structural characterizations and surface chemical states analysis have shown that Ag substitution for Ca in the thin films can be achieved with doping amount of x ≤ 0.15; while x > 0.15, excessive Ag was found as isolated and metallic species, resulting in composite structure. Based on the perfect c-axis orientation of the thin films, Ag-doping has been found to facilitate a remarkable decrease in the in-plane electrical resistivity. However, if doped beyond the substitution limit, excessive Ag was observed to severely reduce the Seebeck coefficient. Through carrier concentration adjustment by Ag-substitution, power factor of the Ag-Ca3Co4O9 thin films could reach 0.73 mW m−1 K−2 at around 700 K, which was about 16% higher than that of the pure Ca3Co4O9 thin film.  相似文献   

20.
Since carbon coating can effectively improve electrical wiring of Li4Ti5O12 and thus enhance its high rate performance, a novel and simple citric acid sol-gel method for in situ carbon coating is employed in this study. The effects of the amount of the carbon source in the starting xerogel on the particle size, the resistance and the electrochemical performance of the synthesized Li4Ti5O12 samples are systematically studied. The physical and electrochemical properties of the obtained samples have been characterized by XRD, TG-DSC, SEM, TEM, BET, A.C. impedance, galvanostatically charge-discharge and cyclic voltammetry tests. The results show that the initial amount of the carbon source in the starting xerogel is a critical factor which determines the content of the coated carbon and the pore volume, therefore governs the high rate performance of the Li4Ti5O12/C composites. The Li4Ti5O12/C composite with in situ carbon coating of 3.5 wt% exhibits the best electrochemical performance which delivers delithiation capacities of 143.6 and 133.5 mAh g−1 with fairly stable cycling performance even after 50 cycles at 0.5C and 1C rate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号