首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
  相似文献   

2.
The conditions for preparation of Ce0.9Y0.1O2 (CYO) oxide coatings on La0.8Sr0.2MnO3 (LSM) ceramic substrates by screen printing were investigated. The CYO compound was synthesized by the pyrolysis of polymer-salt composites with the aim of producing submicron powders with a uniform size distribution. Transmission electron microscopy of the microstructure of the CYO compound synthesized with ethylene glycol revealed that the synthesis product consists of ultrafine crystalline particles with an average size of 5–15 nm. The use of CYO nanopowders made it possible to prepare rather dense single-layer coatings on LSM substrates. It was demonstrated that annealing of the coatings at high temperatures leads to the recrystallization and coarsening of particles.  相似文献   

3.
Ce X Zr1−X O2 catalysts with different cerium content (X) (X=0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0) were prepared by a sol-gel method. Among these catalysts, Ce0.6Zr0.4O2 showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. To see the effect of acidity and basicity of transition metal oxide/Ce0.6Zr0.4O2 catalysts on the catalytic performance in the direct synthesis of dimethyl carbonate, MO/Ce0.6Zr0.4O2 (MO=Ga2O3, La2O3, Ni2O3, Fe2O3, Y2O3, Co3O4, and Al2O3) catalysts were prepared by an incipient wetness impregnation method. NH3-TPD and CO2-TPD experiments were carried out to measure acidity and basicity of the supported catalysts, respectively. Experimental results revealed that both acidity and basicity of the catalysts played a key role in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The amount of dimethyl carbonate produced over MO/Ce0.6Zr0.4O2 catalysts increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, Ga2O3/Ce0.6Zr0.4O2, which had the largest acidity and basicity, exhibited the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.  相似文献   

4.
Triply and doubly charged states of europium are revealed by 151Eu Mössbauer spectroscopy in the structure of glasses of the composition (mol %) 19.5Al2O3, 31.5SiO2, 26.5MnO, and 22.5Eu2O3. The isomer shifts in the Mössbauer spectra of Eu3+ and Eu2+ ions in the structure of glasses differ from the isomer shifts in the spectra of the Eu2O3 and EuO compounds. This difference is explained by the fact that the electron density at 151Eu nuclei is affected by the manganese and aluminum atoms, which are not bound directly to the europium atoms. The broadening of the spectra of the Eu2+ ions in glasses is caused by the nonuniform isomer shift.  相似文献   

5.
In a common salt-in-polymer electrolyte, a polymer which has polar groups in the molecular chain is necessary because the polar groups dissolve lithium salt and coordinate cations. Based on the above point of view, polystyrene [PS] that has nonpolar groups is not suitable for the polymer matrix. However, in this PS-based composite polymer-in-salt system, the transport of cations is not by segmental motion but by ion-hopping through a lithium percolation path made of high content lithium salt. Moreover, Al2O3 can dissolve salt, instead of polar groups of polymer matrix, by the Lewis acid-base interactions between the surface group of Al2O3 and salt. Notably, the maximum enhancement of ionic conductivity is found in acidic Al2O3 compared with neutral and basic Al2O3 arising from the increase of free ion fraction by dissociation of salt. It was revealed that PS-Al2O3 composite solid polymer electrolyte containing 70 wt.% salt and 10 wt.% acidic Al2O3 showed the highest ionic conductivity of 9.78 × 10-5 Scm-1 at room temperature.  相似文献   

6.
At least four compounds, viz. LiAlO2, LiAl5O8, Li5AlO4 and Li2Al4O7, are known in the Li2O-Al2O3 system. These compounds are important for several technological applications. Combustion synthesis of these compounds using urea as a fuel was attempted. LiAlO2 and LiAl5O8 could be successfully prepared by choosing the starting materials in required stoichiometric ratios. Li2Al4O7 was not obtained as a pure phase; γ-LiAlO2 was formed as an impurity phase. Li5AlO4 could not be prepared by combustion process. Some phosphors based on these aluminates could also be prepared. Activation of these aluminates with Fe3+, Mn4+, Cu+, etc. was successfully achieved. Excitation and emission spectra for LiAl5O8: Fe3+, LiAl5O8: Mn2+, and Li2Al4O7: Cu+ are reported.  相似文献   

7.
Magnetic spindle-like Fe3O4 mesoporous nanoparticles with a length of 200 nm and diameter of 60 nm were successfully synthesized by reducing the spindle-like α-Fe2O3 NPs which were prepared by forced hydrolysis method. The obtained samples were characterized by transmission electron microscopy, powder X-ray diffraction, attenuated total reflection fourier transform infrared spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and nitrogen adsorption-desorption analysis techniques. The results show that α-Fe2O3 phase transformed into Fe3O4 phase after annealing in hydrogen atmosphere at 350°C. The as-prepared spindle-like Fe3O4 mesoporous NPs possess high Brunauer-Emmett-Teller (BET) surface area up to ca. 7.9 m2 g-1. In addition, the Fe3O4 NPs present higher saturation magnetization (85.2 emu g-1) and excellent magnetic response behaviors, which have great potential applications in magnetic separation technology.  相似文献   

8.
A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg- CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.
  相似文献   

9.
We investigated the influence of the calcination temperature on the structural properties of Al2O3 and how the resultant Al2O3 support affects the characteristics of Pd/Al2O3 catalysts. Al2O3 pretreated at different calcination temperatures ranging from 500 °C to 1,150 °C, was used as catalyst supports. The Pd/Al2O3 catalysts were prepared by a deposition-precipitation method using a pH 7.5 precursor solution. Characterization of the prepared Pd/Al2O3 catalysts was performed by X-ray diffraction (XRD), N2-physisorption, CO2-temperature programmed desorption (TPD), CO-chemisorption, and field emission-transmission electron microscopic (FE-TEM) analyses. The CO-chemisorption results showed that the Pd catalyst with the Al2O3 support calcined at 900 °C, Pd/Al2O3 (900), had the highest and most uniformly dispersed Pd particles, with a Pd dispersion of 29.8%. The results suggest that the particle size and distribution of Pd are related to the phase transition of Al2O3 and the ratio of isolated tetrahedral to condensed octahedral coordination sites (i.e., functional groups), where the tetrahedral sites coordinate more favorably with Pd.  相似文献   

10.
To improve the stability of CaO adsorption capacity for CO2 capture during multiple carbonation/calcination cycles, modified CaO-based sorbents were synthesized by sol-gel-combustion-synthesis (SGCS) method and wet physical mixing method, respectively, to overcome the problem of loss-in-capacity of CaO-based sorbents. The cyclic CaO adsorption capacity of the sorbents as well as the effect of the addition of La2O3 or Ca12Al14O33 was investigated in a fixed-bed reactor. The transient phase change and microstructure were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FSEM), respectively. The experimental results indicate that La2O3 played an active role in the carbonation/calcination reactions. When the sorbents were made by wet physical mixing method, CaO/Ca12Al14O33 was much better than CaO/La2O3 in cyclic CO2 capture performance. When the sorbents were made by SGCS method, the synthetic CaO/La2O3 sorbent provided the best performance of a carbonation conversion of up to 93% and an adsorption capacity of up to 0.58 g-CO2/g-sorbent after 11 cycles.  相似文献   

11.
Hierarchical porous NiO/Al2O3 composites were successfully prepared by two-steps. First, the core-shell structured Al2O3 microspheres were prepared via a template-free hydrothermal route using KAl(SO4)2·12H2O and Al2(SO4)3·18H2O as aluminum source. Then, the NiO/Al2O3 composites with micro- and nano-hierarchical structures were prepared by a hydrothermal method combining the subsequent calcination process. The obtained characterization result presented that the morphology of hierarchical Al2O3 microsphere tuned to irregular platelets by simply varying Ni/Al ratios. The BET analysis showed that the special surface area from 52.12m2 g?1 to 214.8m2 g?1 after two hydrothermal complex process. Effects of Ni/Al ratio, adsorbent dosage, Congo red (CR) concentration, coexisting ions, adsorption time and temperature were investigated. The obtained results indicated that NiO/Al2O3 composite had the high adsorption efficiency (99.6%) and great adsorption capacity (186.9mg g?1) under the optimum conditions. The adsorption isotherm and kinetics data were found to be well fitted and in good agreement with the Langmuir isotherm model and pseudo-second order model, respectively. The hierarchical porous NiO/Al2O3 composites presented remarkably higher adsorption efficiency during five recycling, which showed their potential as the highly efficient adsorbent for removal of CR in wastewater.  相似文献   

12.
Hydrogen production from steam reforming of acetic acid was investigated over Ni/La2O3-ZrO2 catalyst. A series of Ni/La2O3-ZrO2 catalysts were synthesized by sol-gel method coupled with wet impregnation, which was characterized by XRD, BET, TEM, EDS, TG, SEM and TPR. Catalytic activity of Ni/La2O3-ZrO2 was evaluated by steam reforming of acetic acid at the temperature range of 550-750 °C. The tetragonal phase La0.1Zr0.9O1.95 is formed through the doping of La2O3 into the ZrO2 lattice and nickel species are highly dispersed on the support with high specific surface area. H2 yield and CO2 yield of Ni/La2O3-ZrO2 catalyst with 15%wt Ni reaches 89.27% and 80.41% at 600 °C, respectively, which is attributed to high BET surface area and sufficient Ni active sites in strong interaction with the support. 15%wt Ni supported on La2O3-ZrO2 catalyst maintains relatively stable catalytic activities for a period of 20 h.  相似文献   

13.
To achieve superior separation performance in the phenol aqueous solutions treatment, a novel graphene oxide/Al2O3 composite membrane was prepared by a spin coating process. The microstructure measurement shows that the composite membrane has a multilayer structure and graphene oxide has been tightly coated on the surface of the Al2O3 membrane interlayer homogeneously. During the treatment of phenol aqueous solutions, the permeation flux and phenol rejection of the composite membrane were investigated. The results show the permeation flux of the membrane is about 1.153 L m?2 h?1 bar?1 and the phenol rejection of the membrane increases to 99.9% when the phenol concentration is 0.01 g L?1. The high phenol rejection of the composite membrane is mainly attributed to the physical sieving, the solution–diffusion effect and the hydrophobic nature of graphene oxide. All these results indicate the GO/Al2O3 composite membrane is a suitable material for the removal of phenol from aqueous solutions in environmental pollution management.  相似文献   

14.

Abstract  

Ce X Zr1−X O2 catalysts with different cerium content (X) (X = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0) were prepared by a sol–gel method for use in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Among these catalysts, Ce0.6Zr0.4O2 was found to show the best catalytic performance. In order to enhance the acidity and basicity of Ce0.6Zr0.4O2 catalyst, Ga2O3 was supported on Ce0.6Zr0.4O2 (XGa2O3/Ce0.6Zr0.4O2 (X = 1, 5, 10, and 15)) by an incipient wetness impregnation method with a variation of Ga2O3 content (X, wt%). Effect of acidity and basicity of Ga2O3/Ce0.6Zr0.4O2 on the catalytic performance in the direct synthesis of dimethyl carbonate was investigated using NH3-TPD and CO2-TPD experiments. Experimental results revealed that both acidity and basicity of the catalysts played a key role in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Large acidity and basicity of the catalyst facilitated the formation of dimethyl carbonate. The amount of dimethyl carbonate produced over XGa2O3/Ce0.6Zr0.4O2 catalysts increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, 5Ga2O3/Ce0.6Zr0.4O2, which retained the largest acidity and basicity, showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.  相似文献   

15.
A new green chemical route was designed in this paper for the synthesis of high-silica EU-1 molecular sieve in TEAOH–SiO2–Al2O3–HMBr2–H2O system in which tetraethylammonium hydroxide (TEAOH) substituted for sodium hydroxide (NaOH) as an alkali source. The physicochemical properties of the synthesized samples characterized by such means as X-ray powder diffraction (XRD), electrophoresis apparatus, precise pH meter, scanning electron microscope, Fourier infrared spectrometer (FT-IR), thermo gravimetric analyzer (TG) and temperature programmed desorption (NH3-TPD). The research results showed that the SiO2/Al2O3 ratio of EU-1 molecular sieve could reach 706 with TEAOH as an alkali source. The SiO2/Al2O3 ratio of the product was improved greatly to 1046 with the template agent increasing. The new synthetic route has also significantly expanded the synthetic phase region. The absolute value of zeta potential of the TEAOH sol system was obviously higher than that of the NaOH sol system, indicating the thermodynamic stability of the former sol system was higher and better for the synthesis of pure high-silica EU-1 molecular sieve. The FT-IR spectra and TG/DTG diagrams of products indicated that TEA+ occluded in the final products could balance electronegative framework. The amount of strong, weak and the total acidity reduced with the increase of SiO2/Al2O3 ratio. The catalytic results of methanol-to-hydrocarbon demonstrated that the molecular sieve prepared by the new method has better catalytic performance.  相似文献   

16.
The properties of CaCu3.1Ti4O12.1 [CC3.1TO] ceramics with the addition of Al2O3 nanoparticles, prepared via a solid-state reaction technique, were investigated. The nanoparticle additive was found to inhibit grain growth with the average grain size decreasing from approximately 7.5 μm for CC3.1TO to approximately 2.0 μm for the unmodified samples, while the Knoop hardness value was found to improve with a maximum value of 9.8 GPa for the 1 vol.% Al2O3 sample. A very high dielectric constant > 60,000 with a low loss tangent (approximately 0.09) was observed for the 0.5 vol.% Al2O3 sample at 1 kHz and at room temperature. These data suggest that nanocomposites have a great potential for dielectric applications.  相似文献   

17.
Ni(x)/Al2O3 (x=wt%) catalysts with Ni loadings of 5–25 wt% were prepared via a wet impregnation method on an γ-Al2O3 support and subsequently applied in the reductive amination of ethanol to ethylamines. Among the various catalysts prepared, Ni(10)/Al2O3 exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the highest catalytic performance. To reveal the effects of reaction parameters, a reductive amination process was performed by varying the reaction temperature (T), weight hourly space velocity (WHSV), and NH3 and H2 partial pressures in the reactions. In addition, on/off experiments for NH3 and H2 were also carried out. In the absence of NH3 in the reactant stream, the ethanol conversion and selectivities towards the different ethylamine products were significantly reduced, while the selectivity to ethylene was dominant due to the dehydration of ethanol. In contrast, in the absence of H2, the selectivity to acetonitrile significantly increased due to dehydrogenation of the imine intermediate. Although a small amount of catalyst deactivation was observed in the conversion of ethanol up to 10 h on stream due to the formation of nickel nitride, the Ni(10)/Al2O3 catalyst exhibited stable catalytic performance over 90 h under the optimized reaction conditions (i.e., T=190 °C, WHSV=0.9 h?1, and EtOH/NH3/H2 molar ratio=1/1/6).  相似文献   

18.
In this paper, solvothermal synthesis of submicron nanocrystalline Y2O3: Eu particles with and without surface modifier (β-alanine and Tween-80) is investigated. X-ray diffraction ananlysis confirms the one-step formation of Y2(OH)5NO3H2O phase during solvothermal process and its conversion to Y2O3: Eu after heat treatment at 600 °C. Fourier transformation infrared spectroscopy showed that C=C, C–C and C–H peaks are corresponded to the surface modifiers i.e. tween-80 and β-alanine. Scanning electron microscopy and transmission electron microscopy images also showed that the modifier results in the particle morphology improvement from sheet-like to submicron spherical particles. Photoluminescence experiments indicated that the emission intensity increases due to the morphology modification.  相似文献   

19.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

20.
Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号