首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: this study aims to investigate the possible association among the histopathologic features of carotid plaque instability, the presence of micro- or macrocalcifications, the expression of in situ inflammatory biomarkers, and the occurrence of the major risk factors in this process in a large series of carotid plaques. Methods: a total of 687 carotid plaques from symptomatic and asymptomatic patients were collected. Histological evaluation was performed to classify the calcium deposits in micro or macrocalcifications according to their morphological features (location and size). Immunohistochemistry was performed to study the expression of the main inflammatory biomarkers. Results: results here reported demonstrated that calcifications are very frequent in carotid plaques, with a significant difference between the presence of micro- and macrocalcifications. Specifically, microcalcifications were significantly associated to high inflamed unstable plaques. Paradoxically, macrocalcifications seem to stabilize the plaque and are associated to a M2 macrophage polarization instead. Discussion: the characterization of mechanisms involved in the formation of carotid calcifications can lay the foundation for developing new strategies for the management of patients affected by carotid atherosclerosis. Data of this study could provide key elements for an exhaustive evaluation of carotid plaque calcifications allowing to establish the risk of associated clinical events.  相似文献   

2.
There is a pandemic of obesity and associated chronic diseases. Dietary calcium and vitamin D have many extra-skeletal roles in human health. In this review we have summarized the current understanding of their influence on human energy balance by examining the epidemiological, clinical, animal, cellular and molecular evidence. We opine that while calcium and vitamin D are functional nutrients in the battle against obesity, there is a need for prospective human trials to tilt the balance of evidence in favour of these nutrients.  相似文献   

3.
Brushite (dicalcium phosphate dihydrate, DCPD, CaHPO4·2H2O) and whitlockite [WH, Ca9Mg(HPO4)(PO4)6] are usually found in the mammalian metabolism in the form of diverse pathological calcifications, dental calculi, urinary tract stones, salivary gland deposits, cardiovascular or pulmonary calcified deposits, and even as prostate or cartilage calcifications. The hydrothermal transformation of synthetic brushite crystals into single‐phase whitlockite, octacalcium phosphate, or apatitic calcium phosphate was observed over the time period of 1 to 21 d and at 37°C, 70°C, and 115°C in nonstirred physiologically relevant solutions developed for this work. The strong influence of the physiologically relevant ions such as Mg2+ and HCO3? on hydrothermal transformations is exposed. The formation of the nanoglobules and nanofibrils of X‐ray amorphous calcium phosphate or Mg‐doped calcium phosphate on the surfaces of brushite crystals are observed for the first time in biomimetic solutions containing 10 mm Mg2+ and/or 27 mm HCO3?. The experimental conditions leading to the formation of such nanofibrils on brushite crystal surfaces are also found to stop the further transformation of brushite into any other calcium phosphate (CaP) phases even at high solution temperatures. Samples were characterized by scanning electron microscopy and powder X‐ray diffraction.  相似文献   

4.
Chemokines secreted from stromal cells have important roles for interactions with carcinoma cells and regulating tumor progression. C-C motif chemokine ligand (CCL) 5 is expressed in various types of stromal cells and associated with tumor progression, interacting with C-C chemokine receptor (CCR) 1, 3 and 5 expressed in tumor cells. However, the expression on CCL5 and its receptors have so far not been well-examined in human breast carcinoma tissues. We therefore immunolocalized CCL5, as well as CCR1, 3 and 5, in 111 human breast carcinoma tissues and correlated them with clinicopathological characteristics. Stromal CCL5 immunoreactivity was significantly correlated with the aggressive phenotype of breast carcinomas. Importantly, this tendency was observed especially in the CCR3-positive group. Furthermore, the risk of recurrence was significantly higher in the patients with breast carcinomas positive for CCL5 and CCR3 but negative for CCR1 and CCR5, as compared with other patients. In summary, the CCL5-CCR3 axis might contribute to a worse prognosis in breast cancer patients, and these findings will contribute to a better understanding of the significance of the CCL5/CCRs axis in breast carcinoma microenvironment.  相似文献   

5.
6.
Recent data demonstrate the anabolic effect of oxytocin on bone. Bone cells express oxytocin receptors. Oxytocin promotes osteoblasts differentiation and function, leading to an increased bone formation with no effect on bone resorption and an improvement of bone microarchitecture. Oxytocin is synthetized by osteoblasts, and this synthesis is stimulated by estrogen. Animal studies demonstrate a direct action of oxytocin on bone, as the systemic administration of oxytocin prevents and reverses the bone loss induced by estrogen deficiency. Although oxytocin is involved in bone formation in both sexes during development, oxytocin treatment has no effect on male osteoporosis, underlining the importance of estrogen that amplifies its local autocrine and paracrine secretion. There are few human data showing a decrease in the oxytocin serum level in anorexia nervosa independently of estrogen and in amenorrheic women associated with impaired bone microarchitecture; in post-menopausal women a higher oxytocin serum level is associated with higher bone density, but not in osteoporotic men. Oxytocin displays many effects that may be beneficial in the management of osteoporosis, cardiovascular diseases, cognitive disorders, breast cancer, diabetes and body fat gain, all age-related diseases affecting elderly women, opening exciting therapeutic perspectives, although the issue is to find a single route, dosage and schedule able to reach all these targets.  相似文献   

7.
To evaluate the prognostic value of OCT4 expression and vasculogenic mimicry (VM) in human breast cancer, we examined OCT4 expression and VM formation using immunohistochemistry and CD31/PAS (periodic acid-schiff) double staining on 90 breast cancer specimens. All patients were followed up for five–149 months following surgery. Survival curves were generated using Kaplan-Meier method. Multivariate analysis was performed using Cox regression model to assess the prognostic values. Results showed positive correlation between OCT4 expression and VM formation (p < 0.05). Both OCT4 expression and VM were also positively correlated with lymph node metastasis, higher histological grade, and Nottingham prognostic index (p < 0.05). Patients with OCT4 expression or VM formation exhibited poorer overall survival (OS) and disease-free survival (DFS) than OCT4-negative or VM-negative patients (p < 0.05). OCT4-positive/VM-positive patients also had the worst OS and DFS (p < 0.05). In multivariate survival analysis, VM, Nottingham prognostic index (NPI), and Her2 were independent prognostic factors related to OS and OCT4-positive/VM-positive patients, whereas NPI and Her2 were independent predictors of DFS. These results suggest that a combined OCT4 expression/VM could improve the prognostic judgment for breast cancer patients.  相似文献   

8.
Group B Streptococcus (GBS) is an encapsulated Gram-positive human pathogen that causes invasive infections in pregnant hosts and neonates, as well as immunocompromised individuals. Colonization of the human host requires the ability to adhere to mucosal surfaces and circumnavigate the nutritional challenges and antimicrobial defenses associated with the innate immune response. Biofilm formation is a critical process to facilitate GBS survival and establishment of a replicative niche in the vertebrate host. Previous work has shown that the host responds to GBS infection by producing the innate antimicrobial glycoprotein lactoferrin, which has been implicated in repressing bacterial growth and biofilm formation. Additionally, lactoferrin is highly abundant in human breast milk and could serve a protective role against invasive microbial pathogens. This study demonstrates that human breast milk lactoferrin has antimicrobial and anti-biofilm activity against GBS and inhibits its adherence to human gestational membranes. Together, these results indicate that human milk lactoferrin could be used as a prebiotic chemotherapeutic strategy to limit the impact of bacterial adherence and biofilm formation on GBS-associated disease outcomes.  相似文献   

9.
Studies indicate that mammalian bone formation is initiated at calcium carbonate bioseeds, a process that is driven enzymatically by carbonic anhydrase (CA). We show that amorphous calcium carbonate (ACC) and bicarbonate (HCO3?) cause induction of expression of the CA in human osteogenic SaOS‐2 cells. The mineral deposits formed on the surface of the cells are rich in C, Ca and P. FTIR analysis revealed that ACC, vaterite, and aragonite, after exposure to phosphate, undergo transformation into calcium phosphate. This exchange was not seen for calcite. The changes to ACC, vaterite, and aragonite depended on the concentration of phosphate. The rate of incorporation of phosphate into ACC, vaterite, and aragonite, is significantly accelerated in the presence of a peptide rich in aspartic acid and glutamic acid. We propose that the initial CaCO3 bioseed formation is driven by CA, and that the subsequent conversion to calcium phosphate/calcium hydroxyapatite (exchange of carbonate by phosphate) is a non‐enzymatic exchange process.  相似文献   

10.
Crystal-bearing cells or idioblasts, which deposit calcium oxalate, are located in various tissues and organs of many plant species. The functional significance of their formation is currently unclear. Idioblasts in the leaf parenchyma and the development of crystal-bearing cells in the anther tissues of transgenic tomato plants (Solanum lycopersicon L.), expressing the heterologous FeSOD gene and which showed a decrease in fertility, were studied by transmission and scanning electron microscopy. The amount of calcium oxalate crystals was found to increase significantly in the transgenic plants compared to the wild type (WT) ones in idioblasts and crystal-bearing cells of the upper part of the anther. At the same time, changes in the size and shape of the crystals and their location in anther organs were noted. It seems that the interruption in the break of the anther stomium in transgenic plants was associated with the formation and cell death regulation of a specialized group of crystal-bearing cells. This disturbance caused an increase in the pool of these cells and their localization in the upper part of the anther, where rupture is initiated. Perturbations were also noted in the lower part of the anther in transgenic plants, where the amount of calcium oxalate crystals in crystal-bearing cells was reduced that was accompanied by disturbances in the morphology of pollen grains. Thus, the induction of the formation of crystal-bearing cells and calcium oxalate crystals can have multidirectional effects, contributing to the regulation of oxalate metabolism in the generative and vegetative organs and preventing fertility when the ROS balance changes, in particular, during oxidative stresses accompanying most abiotic and biotic environmental factors.  相似文献   

11.
目的检测乳腺浸润性导管癌中CD44v6分子的表达,探讨其与乳腺浸润性导管癌各临床病理特征的相关性、对预测乳腺浸润性导管癌患者预后的意义以及新辅助化疗对CD44v6分子的影响。方法用免疫组化染色法检测90例乳腺浸润性导管癌化疗前后及10例癌旁非肿瘤乳腺组织中CD44v6的表达,并对所有乳腺浸润性导管癌患者进行随访。结果乳腺浸润性导管癌组织中,CD44v6阳性表达率为81.1%(73/90),明显高于癌旁非肿瘤乳腺组织(0/10);CD44v6的表达与组织学分级、肿瘤大小、腋窝淋巴结转移及转移个数呈正相关,而与患者的年龄、月经状况、ER、PR、CerBb-2、P53之间无显著相关性;CD44v6阴性组的总体生存率明显高于CD44v6阳性组,且CD44v6阳性表达越强,患者总生存率越低;Cox比例风险模型多因素分析显示,CD44v6为影响预后的独立因素;介入化疗组和静脉化疗组化疗前后CD44v6的表达差异均无统计学意义。结论CD44v6分子在乳腺浸润性导管癌的诊断中具有较强的特异性;CD44v6分子可作为预测乳腺浸润性导管癌预后的指标之一,但不能作为判断新辅助化疗疗效的指标。  相似文献   

12.
With the burgeoning interest in hyaluronic acid (HA) in recent years, hyaluronidases (HYALs) have come to light for their role in regulating catabolism of HA and its molecular weight (MW) distribution in various tissues. Of the six hyaluronidase-like gene sequences in the human genome, HYALs 1 and 2 are of particular significance because they are the primary hyaluronidases active in human somatic tissue. Perhaps more importantly, for the sake of this review, they cleave anti-inflammatory and anti-fibrotic high-molecular-weight HA into pro-inflammatory and pro-fibrotic oligosaccharides. With this, HYALs regulate HA degradation and thus the development and progression of various diseases. Given the dearth of literature focusing specifically on HYALs in the past decade, this review seeks to expound their role in human diseases of the skin, heart, kidneys, and more. The review will delve into the molecular mechanisms and pathways of HYALs and discuss current and potential future therapeutic benefits of HYALs as a clinical treatment.  相似文献   

13.
Gutstein  William H.  Parl  Fritz 《Lipids》1978,13(5):380-382
Intermittent electrical stimulation of the lateral hypothalamus of rats performed for 30 min to 6 hr, results in hyperlipidemia and endothelial cell damage of the aorta and coronary arteries. Hyperlipidemia is related to transient biliary obstruction elicited by hypothalamic stimulation and is characterized by elevation of the cholesterol, phospholipid, and triglyceride fractions. Endothelial cell damage is observed ultrastructurally as plasma membrane degeneration with detachment and the formation of large spaces (“vacuoles”). Thus, neural factors may be implicated in inducing conditions associated with early atherogenesis. Stimulation carried out for longer time intervals would be expected to produce more advanced lesions. However, the role of neural transmission per se (i.e., without hyperlipidemia) in producing arteriopathy is not clearly defined from these experiments. In rats, the lesser splanchnic nerve forms the major innervation of the abdominal aorta. In animals fed normal diets, chronic intermittent stimulation of this nerve (up to 3 weeks) resulted in advanced arteriosclerotic changes with intimal fibrosis and calcification. On histologic examination, lipid deposits appeared to be absent from these lesions. Animals stimulated for shorter periods of time exhibited earlier changes associated with atherogenesis, such as endothelial damage, elastic reduplication, and adherent microthrombi. Thus, direct neural transmission, especially if excessive, plays a role in producing arteriopathy. Hyperlipidemia, if persistent, could modify these lesions so that they would accumulate plasma lipids. Experiments to test this hypothesis are currently in progress.  相似文献   

14.
Mitochondrial Cardiomyopathy (MCM) is a common manifestation of multi-organ Mitochondrial Diseases (MDs), occasionally present in non-syndromic cases. Diagnosis of MCM is complex because of wide clinical and genetic heterogeneity and requires medical, laboratory, and neuroimaging investigations. Currently, the molecular screening for MCM is fundamental part of MDs management and allows achieving the definitive diagnosis. In this article, we review the current genetic knowledge associated with MDs, focusing on diagnosis of MCM and MDs showing cardiac involvement. We searched for publications on mitochondrial and nuclear genes involved in MCM, mainly focusing on genetic screening based on targeted gene panels for the molecular diagnosis of the MCM, by using Next Generation Sequencing. Here we report twelve case reports, four case-control studies, eleven retrospective studies, and two prospective studies, for a total of twenty-nine papers concerning the evaluation of cardiac manifestations in mitochondrial diseases. From the analysis of published causal mutations, we identified 130 genes to be associated with mitochondrial heart diseases. A large proportion of these genes (34.3%) encode for key proteins involved in the oxidative phosphorylation system (OXPHOS), either as directly OXPHOS subunits (22.8%), and as OXPHOS assembly factors (11.5%). Mutations in several mitochondrial tRNA genes have been also reported in multi-organ or isolated MCM (15.3%). This review highlights the main disease-genes, identified by extensive genetic analysis, which could be included as target genes in next generation panels for the molecular diagnosis of patients with clinical suspect of mitochondrial cardiomyopathies.  相似文献   

15.
Abnormalities of chromosome 17 are important molecular genetic events in human breast cancers. Several famous oncogenes (HER2, TOP2A and TAU), tumor suppressor genes (p53, BRCA1 and HIC-1) or DNA double-strand break repair gene (RDM1) are located on chromosome 17. We searched the literature on HER2, TOP2A, TAU, RDM1, p53, BRCA1 and HIC-1 on the Pubmed database. The association of genes with chromosome 17, biological functions and potential significance are reviewed. In breast cancer, the polysomy 17 (three or more) is the predominant numerical aberration. HER2 amplification is widely utilized as molecular markers for trastuzumab target treatment. Amplified TOP2A, TAU and RDM1 genes are related to a significant response to anthracycline-based chemotherapy, taxane or cisplatin, respectively. In contrast, p53, BRCA1 and HIC-1 are important tumor suppressor genes related to breast carcinogenesis. This review focused on several crucial molecular markers residing on chromosome 17. The authors consider the somatic aberrations of chromosome 17 and associated genes in breast cancer.  相似文献   

16.
Lysosomal-associated membrane protein 3 (LAMP3), identified as a molecular marker of mature dendritic cells, is one of the LAMP family members. Its expression was induced by hypoxia, and was associated with hypoxia mediated metastasis in breast and cervical cancers. However, epithelial expression of LAMP3 and its prognostic value in esophageal squamous cell carcinoma (ESCC) is still unknown. In the current study, mRNA expression of LAMP3 in 157 ESCC tissues and 50 adjacent normal tissues was detected by quantitative real-time PCR (qRT-PCR). LAMP3 protein expression in 46 paired cancerous and normal tissues was detected by immunohistochemistry (IHC). Then, DNA copy number was examined to observe its potential correlation with mRNA expression. The results showed that both mRNA and protein expression level of LAMP3 was significantly higher in cancerous tissues compared with normal controls (p < 0.001). LAMP3 DNA copy number was amplified in 70% of ESCC tissues and positive correlated with mRNA expression (p = 0.037). Furthermore, patients with higher LAMP3 expression had worse overall survival (HR = 1.90, 95% CI = 1.17–3.09, p = 0.010) and disease-free survival (HR = 1.80, 95% CI = 1.18–2.74, p = 0.006). In conclusion, our results suggest that epithelial LAMP3 expression is an independent prognostic biomarker for ESCC.  相似文献   

17.
Adipocyte fatty acid-binding protein (A-FABP), which is also known as ap2 or FABP4, is a fatty acid chaperone that has been further defined as a fat-derived hormone. It regulates lipid homeostasis and is a key mediator of inflammation. Circulating levels of A-FABP are closely associated with metabolic syndrome and cardiometabolic diseases with imminent diagnostic and prognostic significance. Numerous animal studies have elucidated the potential underlying mechanisms involving A-FABP in these diseases. Recent studies demonstrated its physiological role in the regulation of adaptive thermogenesis and its pathological roles in ischemic stroke and liver fibrosis. Due to its implication in various diseases, A-FABP has become a promising target for the development of small molecule inhibitors and neutralizing antibodies for disease treatment. This review summarizes the clinical and animal findings of A-FABP in the pathogenesis of cardio-metabolic diseases in recent years. The underlying mechanism and its therapeutic implications are also highlighted.  相似文献   

18.
Specific markers for diseases associated with protein aggregate depositions are of great interest. Here we report the use of conjugated polyelectrolytes as conformation-sensitive optical probes for histological labeling of amyloid deposits in ex vivo tissue samples-amyloid light chains in primary systemic amyloidosis, islet amyloid polypeptide in human pancreas, and Abeta amyloid in Alzheimer's disease. Under suitable conditions, these probes bind specifically to amyloid deposits, and this is seen as an orange-red emission from the polyelectrolyte. Furthermore, the probes emit light of different colors when bound to different amyloid deposits or other intracellular structures. This phenomenon is most probably due to differences in the protein conformation in these structures. Hence, different protein conformations will generate geometric alterations of the bound polyelectrolyte backbone, affording different emissions from the bound probe. Conformation-sensitive probes thus provide a direct link between spectral signal and protein conformation. Finally, the probes also proved useful for ex vivo fluorescence imaging by multiphoton excitation.  相似文献   

19.
Periodontitis is a chronic inflammatory immune disease associated with a dysbiotic state, influenced by keystone bacterial species responsible for disrupting the periodontal tissue homeostasis. Furthermore, the severity of periodontitis is determined by the interaction between the immune cell response in front of periodontitis-associated species, which leads to the destruction of supporting periodontal tissues and tooth loss in a susceptible host. The persistent bacterial challenge induces modifications in the permeability and ulceration of the sulcular epithelium, which facilitates the systemic translocation of periodontitis-associated bacteria into distant tissues and organs. This stimulates the secretion of pro-inflammatory molecules and a chronic activation of immune cells, contributing to a systemic pro-inflammatory status that has been linked with a higher risk of several systemic diseases, such as type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM). Although periodontitis and GDM share the common feature of systemic inflammation, the molecular mechanistic link of this association has not been completely clarified. This review aims to examine the potential biological mechanisms involved in the association between periodontitis and GDM, highlighting the contribution of both diseases to systemic inflammation and the role of new molecular participants, such as extracellular vesicles and non-coding RNAs, which could act as novel molecular intercellular linkers between periodontal and placental tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号