首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Formation of secondary phases and diffusion of cations in diffusion couples of yttria-stabilized zirconia and lanthanum manganite substituted with 0 to 60 mol% strontium have been studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. Only the primary phases were observed after 120 h at 1200°C, while formation of secondary phases was identified already after 1 h heat treatment at 1350°C. The phase composition of the reaction layer altered from La2Zr2O7 to SrZrO3 at increasing Sr content in La x Sr1- x MnO3. The thickness of the reaction layer was increasing with heat treatment time. In diffusion couples of La0.4Sr0.6MnO3 formation of manganese oxide was observed in the perovskite layer after 1 h heat treatment at 1350°C, while isolated grains of SrZrO3 relatively deep inside the zirconia were observed after longer heat treatment time. Diffusion of Mn into zirconia was observed preferenced along grain boundaries in the early stage of the interface reaction.  相似文献   

2.
Equimolar powder mixtures and multilayer pellets of single-phase Sr-doped lanthanum manganite perovskite materials Lay-xSrxMnO3 with La content y = 1 and 0.95 and Sr content 0 ≤ x ≤ 0.5 were annealed in air with 8 mol% Y2O3-ZrO2 at 1470 K, up to 400 h and at 1670 K. up to 200 h. X-ray diffraction and electron probe microanalysis confirmed the formation of La2Zr2O7 or SrZrO3 depending on the composition of the perovskites. No reaction products could be detected for La0.95-xSr xMnO3 with 0.2 ≤ x ≤ 0.4 after annealing for 400 h at 1470 K, and for the perovskite La0.65Sr0.3MnO3 even after annealing for 200 h at 1670 K. The results demonstrate the improved chemical compatibility of La-deficient perovskites against reaction with zirconia and can provide a basis for the selection of a sufficiently chemically stable material for the air electrode of solid oxide fuel cells.  相似文献   

3.
Sintered submicrometer powder mixtures of strontium-substituted lanthanum manganite and yttria-stabilized zirconia have been studied in order to investigate the chemical stability of these materials as respectively electrode and electrolyte in solid oxide fuel cells. Formation of secondary phases was observed after 1 h heat treatment at 1350°C and more than 13 h at 1200°C. La2Zr2O7 was formed in mixtures with LaMnO3 at 1350°C, while SrZrO3 was formed in mixtures containing La0.6Sr0.4MnO3 or La0.4Sr0.6MnO3. Only minor amounts of secondary phases were observed in mixtures with La0.7Sr0.3MnO3. Chemical analysis revealed considerable interdiffusion between the primary phases as well as A-site deficiency of LaMnO3 and La0.7Sr0.3MnO3 when exposed to cubic zirconia. The oxidative/reductive nature of the chemical reaction between strontium-substituted lanthanum manganite and yttria-stabilized zirconia is discussed in relation to the Sr content in LSM. The lattice parameter of cubic zirconia was observed to be quite sensitive to the interdiffusion and is an excellent tool for investigating reactions on heterophase interfaces involving stabilized zirconia.  相似文献   

4.
The reaction kinetics and mechanisms between 8 mol% yttria-stabilized zirconia (YSZ) and 30 mol% Sr-doped lanthanum manganite (La0.65Sr0.30MnO3, LSM) with A-site deficiency for the application of planar solid oxide fuel cells (SOFCs) were investigated. The LSM/YSZ green tapes were cofired from 1200° to 1400°C for 1 to 48 h and then annealed at 1000°C for up to 1000 h. The results showed that the diffusion of manganese cations first caused the amorphization of YSZ, and then the formation of small La2Zr2O7 (LZ) or SrZrO3 (SZ) crystals if treated for a longer time at 1400°C. The ambipolar diffusion of the Mn–O pair, transported through the migration of oxygen vacancy, plays an important role in the formation of secondary phases. The diffusion of LSM to YSZ and substitution of Mn for Zr both result in the enhanced concentration of oxygen vacancy, leading to the formation of a void-free zone (VFZ). No additional reaction products in annealed LSM/YSZ specimens, treated at 1000°C for 1000 h, were detected. The interfacial reactions, detailed reaction kinetics, and mechanisms are reported.  相似文献   

5.
Orthoferrite-based perovskites are of interest as materials for the cathode in solid oxide fuel cells (SOFCs). Therefore, the chemical compatibility between perovskites of the composition (La1−xSrx)zFe1−yMnyO3−δ (0 # x # 0.3; 0.2 # y # 1; z = 0.90, 0.95, 1.00) and the solid electrolyte zirconia (ZrO2) doped with 8 mol% yttria (Y2O3) (8YSZ) has been investigated. Powder mixtures of the two materials have been annealed at different temperatures. The formation of monoclinic ZrO2 at 1000°C, as well as of La2Zr2O7 and SrZrO3 at 1400°C, has been determined in some samples. The reactions that are observed are discussed, with respect to the thermodynamic activities, tolerance factor, and oxygen-ion migration energies. Some perovskite compositions seem to be compatible with Y2O3-stabilized ZrO2 (YSZ), thereby offering the possibility to use orthoferrite-based perovskites in SOFCs with a solid electrolyte made of YSZ.  相似文献   

6.
A novel, microchanneled tubular solid oxide fuel cell was fabricated using a multipass extrusion process, with an outside diameter of 2.7 mm that contained 61 cells. Cell materials used in this work were 8 mol% yttria-stabilized zirconia (8YSZ), La0.8Sr0.2MnO3 (LSM), and NiO–8YSZ (50:50 vol%) as electrolyte, cathode, and anode, respectively. Three stages of heat-treatment processes were applied, at 700°C in N2 condition, at 1000°C in air, and then sintered at 1300°C for 2 h, respectively. The X-ray diffraction analysis confirmed that no reaction phases appeared after sintering. The microstructures of anode and cathode were fairly porous while the electrolyte had a dense microstructure (relative density >96%). The thickness of electrolyte, anode, and cathode were 20, 30, and 40 μm, respectively, and the diameter of the continuous channels was 150 μm.  相似文献   

7.
Solid oxide fuel cells that incorporate stabilized-zirconia electrolytes commonly use the transition-metal oxide perovskite La0.875Sr0.125MnO3+δ as the cathode. While in operation, the cathode can be subjected to significant stresses, because of thermal expansion mismatch between mating components. The mechanical behavior of La0.875Sr0.125MnO3+δ has been studied using three-point bend strength measurements at ambient, 400°C, 800°C and 1000°C. The results show that phase transformations have an important role in the mechanical-strength behavior. The results also indicate some unique strengthening effects that are associated with the evolution of the unit cell with temperature and the increasing symmetry of the crystal lattice.  相似文献   

8.
Perovskite-type SrZrO3 was investigated as an alternative to yttria-stabilized zirconia (YSZ) material for thermal barrier coating (TBC) applications. Three phase transformations (orthorhombic↔pseudo-tetragonal↔tetragonal↔cubic) were found only by heat capacity measurement, whereas the phase transformation from orthorhombic to pseudo-tetragonal was found in thermal expansion measurements. The thermal expansion coefficients (TECs) of SrZrO3 coatings were at least 4.5% larger than YSZ coatings up to 1200°C. Mechanical properties (Young's modulus, hardness, and fracture toughness) of dense SrZrO3 showed lower Young's modulus, hardness, and comparable fracture toughness with respect to YSZ. The "steady-state" sintering rate of a SrZrO3 coating at 1200°C was 1.04 × 10−9 s−1, which was less than half that of YSZ coating at 1200°C. Plasma-sprayed coatings were produced and characterized. Thermal cycling with a gas burner showed that at operating temperatures ∼1250°C the cycling lifetime of SrZrO3/YSZ double-layer coating (DLC) was more than twice as long as SrZrO3 coating and comparable to YSZ coating. However, at operating temperatures >1300°C, the cycling lifetime of SrZrO3/YSZ DLC was comparable to the optimized YSZ coating, indicating SrZrO3 might be a promising material for TBC applications at higher temperatures compared with YSZ.  相似文献   

9.
The electrochemical performance and structural features of (La1− y Ca y )(Co x Fe1− x )O3 cathode prepared via a citrate acid gel route are studied when it is interfaced with the (La1.8Dy0.2)(Mo2− z W z )O9 electrolyte. The resistance and chemical capacitance of a low-frequency arc are extracted from the impedance results to evaluate its catalytic activity in oxygen reduction reaction (ORR). (La0.75Ca0.25)(Co0.8Fe0.2)O3 cathode exhibits the minimum area-specific resistance of 0.9 Ω cm2 and maximum capacitance of 5.7 mF/cm2 at 800°C among the compositions of x =0.1–0.9 and y =0.25. As the Co content increases, the decrease in resistance outweighs the increase in capacitance so that the product of resistance and capacitance ( RC time constant) decreases. In contrast, when varying the Ca content of the A-site, the changes in resistance and the capacitance compensate each other; hence the RC time constant is virtually unchanged with respect to the calcium content. Thus, Co is a more influential element than Ca on the ORR catalytic activity. The pore structure study reveals a small amount of Mo diffuses from the electrolyte into the cathode, and its quantity is reduced when interfaced to an electrolyte of high W content.  相似文献   

10.
(La0.8Sr0.2)0.98Fe0.98Cu0.02O3−δ can be sintered directly onto YSZ (without the need for a protective ceria interlayer). Though subject to an extended "burn-in" period (∼200 h), anode-supported YSZ cells using the Cu-doped LSF achieve power densities ranging from 1.3 to 1.7 W/cm2 at 750°C and 0.7 V. These cells have also demonstrated 500 h of stable performance. The results are somewhat surprising given that XRD indicates an interaction between (La0.8Sr0.2)0.98Fe0.98-Cu0.02O3−δ and YSZ resulting in the formation of strontium zirconate and/or monoclinic zirconia. The amount and type of reaction product was found to be dependent on cathode and electrolyte powder precalcination temperatures.  相似文献   

11.
The performance of La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) as an optimized electrolyte of a solid oxide fuel cell was tested on single cells having a 500-µm-thick electrolyte membrane. The reactivity of NiO and LSGM suggested use of an interlayer to prevent formation of LaNiO3. The interlayer Sm-CeO2 was selected and sandwiched between the electrolyte and anode. Comparison of Sm-CeO2/Sm-CeO2+ Ni and Sm-CeO2+ Ni as anodes showed that Sm-CeO2/Sm-CeO2+ Ni gave an exchange current density 4 times higher than that of Sm-CeO2+ Ni. The peak power density of the interlayered cell is 100 mW higher than that of the standard cell without the interlayer. This improvement is due to a significant reduction of the anode overpotential; the overpotential of the cathode La0.6Sr0.4CoO3-delta (LSCo) remained unchanged. Comparison of the peak power density in this study and with that of a previous study, also with a 500-µm-thick electrolyte, indicates a factor of 2 improvement, i.e., from 270 mW/cm2 to 550 mW/cm2 at 800°C. The excellent cell performance showed that an LSGM-based thick membrane SOFC operating at temperatures 600° < T op < 800°C is a realistic goal.  相似文献   

12.
X-ray diffraction and transmission electron microscopy were applied to investigate a sol–gel synthetic process for the mixed oxygen ion and electron conductor La2NiO4+δ with a K2NiF4 structure type. The development of the La2NiO4+δ is elucidated considering the influence of calcination temperatures and dwell times. Following the thermal decomposition of nitrate and organic precursors in an intermediate step, the lanthanum nickel oxide is obtained after a short dwell time above 750°C. This occurs by the transformation of an ultrafinely dispersed powder consisting of lanthanum oxycarbonate, lanthanum oxide, and nickel oxide. The pure La2NiO4+δ phase was obtained by similar solid-state reactions between nanocrystalline powder particles at just 950°C.  相似文献   

13.
An all-alkoxide route to films and nano-phase powders of the La0.5Sr0.5CoO3 perovskite is described. To our knowledge, this is the first purely alkoxide-based route to (La1− x Sr x )CoO3, and it yields phase-pure and elementally homogeneous perovskite at 700°C by heating at 2°C/min. At 700°C, a cubic unit cell was obtained with a c=3.853Å, and after further heating to 1000°C, a rhombohedral cell could be indexed: a r=5.417 Å, αr=59.94°. Ninety to 130 nm thick films of La0.5Sr0.5CoO3 were obtained by spin coating. The gel-to-oxide conversion was studied in some detail, using thermo-gravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, IR spectroscopy, and transmission electron microscope equipped with an energy-dispersive X-ray spectrometer.  相似文献   

14.
Nanocrystalline La0.9Sr0.1Al0.85Co0.05Mg0.1O3 oxide powder was synthesized by a citrate–nitrate auto-ignition process and characterized by thermal analysis, X-ray diffraction, and impedance spectroscopy measurements. Nanocrystalline (50–100 nm) powder with perovskite structure could be produced at 900°C by this process. The powder could be sintered to a density more than 96% of the theoretical density at 1550°C. Impedance measurements on the sintered samples unequivocally established the potential of this process in developing nanostructured lanthanum aluminate-based oxides. The sintered La0.9Sr0.1Al0.85Co0.05Mg0.1O3 sample exhibited a conductivity of 2.40 × 10−2 S/cm in air at 1000°C compared with 4.9 × 10−3 S/cm exhibited by La0.9Sr0.1Al0.85Mg0.15O3.  相似文献   

15.
A centrifugal casting technique was developed for depositing thin 8-mol%-yttrium-stabilized zirconia (YSZ) electrolyte layers on porous NiO-YSZ anode substrates. After the bilayers were cosintered at 1400°C, dense pinhole-free YSZ coatings with thicknesses of ∼25 μm were obtained, while the Ni-YSZ retained porosity. After La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Ce0.9Gd0.1O1.95 (GDC) or La0.8Sr0.2MnO3 (LSM)-YSZ cathodes were deposited, single SOFCs produced near-theoretical open-circuit voltages and power densities of ∼1 W/cm2 at 800°C. Impedance spectra measured during cell tests showed that polarization resistances accounted for ∼70%–80% of the total cell resistance.  相似文献   

16.
Perovskite-type thin films of lanthanum manganese oxide (LaMnO3) were prepared on yttria (8%) stabilized zirconia substrate by the sol–gel process from an alkoxide solution of lanthanum isopropoxide (La(O- i -C3H7)3) and manganese isopropoxide (Mn(O- i -C3H7)2). The alkoxide solution was chelated with 2-ethyacetoacetate, and further modified with polyethylene glycol (PEG). The obtained LaMnO3 thin film was transparent and macroscopically crackless. X-ray diffraction, differential thermal analysis–thermogravimetry analysis, and scanning electron microscope observations indicated that single-phase LaMnO3 thin films with a grain size of 80 to 100 nm are formed when a spin-coated LaMnO3 gelled film is heated at 600°C for 1 h. The porous and homogeneous grain structure with a grain size of <100 nm can be obtained when the LaMnO3 gelled film is heated at 600° and 800°C. It was considered that PEG might accelerate the crystallization of the perovskite phase, which indicates that PEG assists the formation of the La-O-Mn frame network during partial hydrolysis and condensation reactions in sol–gel processes.  相似文献   

17.
La0.8Sr0.2Cr0.9Ti0.1O3 perovskite has been designed as an interconnect material in high-temperature solid oxide fuel cells (SOFCs) because of its thermal expansion compatibility in both oxidizing and reducing atmospheres. La0.8Sr0.2Cr0.9Ti0.1O3 shows a single phase with a hexagonal unit cell of a = 5.459(1) Å, c = 13.507(2) Å, Z = 6 and a space group of R -3 C . Average linear thermal expansion coefficients of this material in the temperature range from 50° to 1000°C were 10.4 × 10−6/°C in air, 10.5 × 10−6/°C under a He–H2 atmosphere (oxygen partial pressure of 4 × 10−15 atm at 1000°C), and 10.9 × 10−6/°C in a H2 atmosphere (oxygen partial pressure of 4 × 10−19 atm at 1000°C). La0.8Sr0.2Cr0.9Ti0.1O3 perovskite with a linear thermal expansion in both oxidizing and reducing environments is a promising candidate material for an SOFC interconnect. However, there still remains an air-sintering problem to be solved in using this material as an SOFC interconnect.  相似文献   

18.
Samples of LaMn1-xCuxO3-y in the range 0≤x≤0.8 were prepared from freeze-dried solutions of the nitrates. Samples with x≤0.6 were single-phase perovskites. At higher values of x , the samples contained La2CuO4 and CuO as well as the perovskite phase. Samples of LaMn1−x,Cux,O3−y supported on ceramic monoliths or when mixed with powdered A12O3 exhibit catalytic activity for the oxidation of CO. Greatest activity is shown for 0.4≤x≤0.7. Although the catalysts are severely poisoned by SO2, 2% H2O in the gas stream causes only slight deactivation. Activities of other oxide catalysts were also measured and compared. Rate constants per unit surface area at 200° to 400°C follow the order Co3O4>Pt>LaMn1−xCuxO3−y (0.4≤x≤0.7)>copper chromite>La1−xSrx,MnO3≤ other substituted LaMnO3 materials, CuO, or La2CuO4. The perovskite catalyst is more stable than Co3O4 or copper chromite when heated in 10% H2+ 90% N2.  相似文献   

19.
The phase diagram for the CuO-rich part of the La2O3─CuO join was redetermined. La2Cu2O5 was found to have a lower limit of stability at 1002°± 5°C and an incongruent melting temperature of ∼1035°C. LagCu7O19 had both a lower (1012°± 5°C) and an upper (1027°± 5°C) limit of stability. Subsolidus phase relations were studied in the La2O3─CuO─CaO system at 1000°, 1020°, and 1050°C in air. Two ternary phases, La1.9Ca1.1Cu2O5.9 and LaCa2Cu3O8.6, were stable at these temperatures, with three binary phases, Ca2CuO3, CaCu2O3, and La2CuO4. La2Cu2O5 and La8Cu7O19 were stable only at 1020°C, and did not support solid-solution formation.  相似文献   

20.
Mixtures of La2O3 and Al2O3 with various La contents were prepared by co-precipitation from La(NO3)3 and Al(NO3)3 solutions and calcined at 800° to 1400°C. The addition of small amounts of La2O3 (2 to 10 mol%) to Al2O3 gives rise to the formation of lanthanum β-alumina (La 2 O3·11–14Al2O3) upon heating to above 1000°C and retards the transformation of γ-Al2O3 to α-Al2O3 and associated sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号